
Apache httpd v2.4:
Reverse Proxy

(The “Hidden” Gem)

Jim Jagielski

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

About me
➡ Jim Jagielski

Hacker and developer
Wearer o’ many hats at the ASF 

Director and President: Outercurve 

Council member: MARSEC-XL

Consulting Engineer with Red Hat

@jimjag

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Apache httpd 2.4
➡ Currently at version 2.4.12 (2.4.1 went GA Feb 21, 2012)
➡ Significant Improvements

high-performance

cloud suitability

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Apache httpd 2.4 - design drivers
➡ Support for async I/O w/o dropping support for older systems
➡ Larger selection of usable MPMs: added Event, Simple, etc...
➡ Leverage higher-performant versions of APR
➡ Increase performance
➡ Reduce memory utilization
➡ The Cloud and Reverse Proxy

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

httpd is sooo old school (aka fud)

➡ Apache doesn’t scale (its SLOW)
http://www.youtube.com/watch?v=bzkRVzciAZg 
 

➡ Apache is too generalized 
 
 

➡ Apache is too complex (config file)
really?

➡ Apache is too old 
(yeah, just like Linux)

vs

It’s Squagels!

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Cloud and Dynamics
➡ The Cloud is a game changer for web servers

The cloud is a dynamic place

automated reconfiguration

horizontal, not vertical scaling

self-aware environments

OK, maybe not THAT self-aware

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Why Dynamic Proxy Matters
➡ Apache httpd still the most frequently used front-end
➡ Proxy capabilities must be cloud friendly
➡ Front-end must be dynamic friendly

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Reverse Proxy

Internet

Firewall Firewall

Cloud

Reverse Proxy Server

Transactional
Servers

Browser

➡ Operates at the server end of the transaction
➡ Completely transparent to the Web Browser – thinks the

Reverse Proxy Server is the real server

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Features of Reverse Proxy Server
➡ Security

Uniform security policy can be administered
The real transactional servers are behind the firewall

➡ Delegation, Specialization, Load Balancing
➡ Caching
➡ Performance, HA

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Proxy Design Drivers
➡ Becoming a robust but generic proxy implementation
➡ Support various protocols

HTTP, HTTPS, CONNECT, FTP

AJP, FastCGI, SCGI, WSGI

Load balancing

➡ Clustering, failover
➡ Performance

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Apache httpd 2.4 proxy
➡ Reverse Proxy Improvements

Supports FastCGI, SCGI, Websockets in balancer

Additional load balancing mechanisms

Runtime changing of clusters w/o restarts

Support for dynamic configuration

mod_proxy_express

mod_fcgid and fcgistarter

Brand New: Support for Unix Domain Sockets

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Configuring Reverse Proxy
➡ Set ProxyRequests Off
➡ Apply ProxyPass, ProxyPassReverse and possibly RewriteRule

directives

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Reverse Proxy Directives: 
ProxyPass
➡ Allows remote server to be mapped into the space of the local

(Reverse Proxy) server
➡ There is also ProxyPassMatch which takes a regex
➡ Example:

ProxyPass /secure/ http://secureserver/  

Presumably “secureserver” is inaccessible directly from the internet 

ProxyPassMatch ^/(.*\.js)$ http://js-storage.example.com/bar/$1

http://secureserver/

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Reverse Proxy Directives: 
ProxyPassReverse
➡ Used to specify that redirects issued by the remote server are to

be translated to use the proxy before being returned to the
client.

➡ Syntax is identical to ProxyPass; used in conjunction with it
➡ Example:

➡ProxyPass /secure/ http://secureserver/
➡ProxyPassReverse /secure/ http://secureserver/

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Simple Rev Proxy
➡ All requests for /images to a backend server

ProxyPass /images http://images.example.com/

ProxyPass <path> <scheme>://<full url>
➡ Useful, but limited
➡ What if:

images.example.com dies?
traffic for /images increases

http://images.example.com

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Load Balancing
➡ mod_proxy_balancer.so
➡ mod_proxy can do native load balancing

weight by actual requests

weight by traffic

weight by busyness

lbfactors

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Create a balancer “cluster”
➡ Create a balancer which contains several host nodes
➡ Apache httpd will then direct to each node as specified

<Proxy balancer://foo>

 BalancerMember http://www1.example.com:80/ loadfactor=1

 BalancerMember http://www2.example.com:80/ loadfactor=1

 BalancerMember http://www3.example.com:80/ loadfactor=4 status=+h

 ProxySet lbmethod=bytraffic

</Proxy>

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For BalancerMembers:

loadfactor

normalized load for worker [1]

lbset

worker cluster number [0]

retry

retry timeout, in seconds, for non-ready workers [60]

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For BalancerMembers (cont):

connectiontimeout/timout

Connection timeouts on backend [ProxyTimeout]

flushpackets *
Does proxy need to flush data with each chunk of data?

on : Yes | off : No | auto : wait and see

flushwait *
ms to wait for data before flushing

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For BalancerMembers (cont):

ping
Ping backend to check for availability; value is time to wait for response

status (+/-)
D : Disabled
S : Stopped
I : Ignore errors
H : Hot standby
E : Error
N: Drain

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For Balancers:

lbmethod

load balancing algo to use [byrequests]

stickysession

sticky session name (eg: PHPSESSIONID)

maxattempts

failover tries before we bail

growth

Extra BalancerMember slots to allow for

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For Balancers:

nofailover

pretty freakin obvious

➡ For both:
ProxySet

Alternate method to set various params

ProxySet balancer://foo timeout=10
 ...
ProxyPass / balancer://foo timeout=10

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Connection Pooling
➡ Backend connection pooling
➡ Available for named workers:

eg: ProxyPass /foo http://bar.example.com

➡ Reusable connection to origin
For threaded MPMs, can adjust size of pool (min, max, smax)

For prefork: singleton

➡ Shared data held in shared memory

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For BalancerMembers - connection pool:

min

Initial number of connections [0]

max

Hard maximum number of connections [1|TPC]

smax:
soft max - keep this number available [max]

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Some config params
➡ For BalancerMembers - connection pool:

disablereuser/enablereuse:
bypass/enable the connection pool (firewalls)

ttl

time to live for connections above smax

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Sessions
➡ Sticky session support

aka “session affinity”

➡ Cookie based
stickysession=PHPSESSID

stickysession=JSESSIONID

➡ Natively easy with Tomcat
➡ May require more setup for “simple” HTTP proxying
➡ Use of mod_session helps

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Failover control
➡ Cluster set with failover
➡ Group backend servers as numbered sets

balancer will try lower-valued sets first

If no workers are available, will try next set

➡ Hot standby

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Putting it all together
<Proxy balancer://foo>

 BalancerMember http://php1:8080/ loadfactor=1

 BalancerMember http://php2:8080/ loadfactor=4

 BalancerMember http://phpbkup:8080/ loadfactor=1 status=+h

 BalancerMember http://phpexp:8080/ lbset=1

 ProxySet lbmethod=bytraffic

</Proxy>

<Proxy balancer://javaapps>

 BalancerMember ajp://tc1:8089/ loadfactor=10

 BalancerMember ajp://tc2:8089/ loadfactor=40

 ProxySet lbmethod=byrequests

</Proxy>

ProxyPass /apps/ balancer://foo/

ProxyPassReverse /apps/ balancer://foo/

ProxyPass /serv/ balancer://javaapps/

ProxyPass /images/ http://images:8080/

ProxyPass /foo unix:/home/www.socket|http://localhost/bar/

http://localhost/bar/

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Mass Reverse Proxy
➡ We front-end a LOT of reverse proxies

What a httpd.conf disaster!

Slow and bloated

mod_rewrite doesn’t help

<VirtualHost www1.example.com>
 ProxyPass / http://192.168.002.2:8080
 ProxyPassReverse / http://192.168.002.2:8080
</VirtualHost>
 
<VirtualHost www2.example.com>
 ProxyPass / http://192.168.002.12:8088  
 ProxyPassReverse / http://192.168.002.12:8088
</VirtualHost>

<VirtualHost www3.example.com>
 ProxyPass / http://192.168.002.10
 ProxyPassReverse / http://192.168.002.10
</VirtualHost>
 ...
<VirtualHost www6341.example.com>
 ProxyPass / http://192.168.211.26
 ProxyPassReverse / http://192.168.211.26
</VirtualHost>

http://192.168.211.2:8080
http://192.168.211.2:8080
http://192.168.211.12:8088
http://192.168.211.12:8088
http://192.168.212.10
http://192.168.212.10
http://192.168.211.26
http://192.168.211.26

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Mass Reverse Proxy
➡ Use the new mod_proxy_express module

ProxyPass mapping obtained via db file

Fast and efficient

Still dynamic, with no config changes required
ProxyExpress map file
 
##express-map.db:  
 
 
www1.example.com http://192.168.002.2:8080 
www2.example.com http://192.168.002.12:8088 
www3.example.com http://192.168.002.10
 ...
www6341.example.com http://192.168.211.26

httpd.conf file
ProxyExpressEnable On
ProxyExpressDBMFile express-map.db

http://192.168.211.2:8080
http://192.168.211.12:8088
http://192.168.212.10
http://192.168.211.26

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

HeartBeat / HeartMonitor
➡ Experimental LB (load balance) method

Uses multicast between gateway and reverse proxies

Provides heartbeat (are you there?) capability

Also provides basic load info

This info stored in shm, and used for balancing

➡ Multicast can be an issue
➡ Use mod_header with %l, %i, %b (loadavg, idle, busy)

but no LBmethod currently uses this :(

➡ We need a universal “load” measure

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

balancer-manager
➡ Embedded proxy admin web interface
➡ Allows for real-time

Monitoring of stats for each worker

Adjustment of worker params
lbset
load factor
route
enabled / disabled
...

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Embedded Admin
➡ Allows for real-time

Addition of new workers/nodes
Change of LB methods
Can be persistent!
More RESTful
Can be CLI-driven

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Easy setup
<Location /balancer-manager>

 SetHandler balancer-manager

 Require 192.168.2.22

</Location>

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Admin

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

server-status aware

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Performance
➡ From Bryan Call’s 2014 ApacheCon preso

•  Squid&used&the&most&
CPU&again&

•  NGiNX&had&latency&
issues&

•  ATS&most&throughput& 0&

500&

1000&

1500&

2000&

2500&

ATS& NGiNX& Squid& Varnish& hBpd&

RPS$/$CPU$Usage$

0&

5000&

10000&

15000&

20000&

25000&

30000&

ATS& NGiNX& Squid& Varnish& hBpd&

RequestsPerSecond$

0&

5&

10&

15&

20&

25&

30&

35&

40&

ATS& NGiNX& Squid& Varnish& hBpd&

Latency$

Median&

95th&

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

What’s on the horizon?
➡ Extend mod_proxy_express
➡ Adding additional protocols
➡ More dynamic configuration

Adding balancers!

➡ Extend/improve caching
➡ Performance, of course!

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

In conclusion...
➡ For cloud environs and other, the performance and dynamic

control of Apache httpd 2.4 in reverse proxies is just what the
Dr. ordered (and flexibility remains a big strength)

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Thanks
Twitter: @jimjag

Emails: 
jim@jaguNET.com 
jjagielski@outercurve.org  
jim@apache.org  
jimjag@redhat.com

http://www.slideshare.net/jimjag/

mailto:jim@jaguNET.com
mailto:jjagielski@outercurve.org
mailto:jim@apache.org
mailto:jimjag@redhat.com
http://www.slideshare.net/jimjag/

