
© Hitachi, Ltd. 2014. All rights reserved.

Scalability Efforts for Kprobes
or: How I Learned to Stop Worrying and Love a Massive

Number of Kprobes

Masami Hiramatsu
<masami.hiramatsu.pt@hitachi.com>
Linux Technology Research Center
Yokohama Research Lab. Hitachi Ltd.,

LinuxCon Japan 2014
(2014/5/22)

1

© Hitachi, Ltd. 2014. All rights reserved.

Speaker

• Masami Hiramatsu

– A researcher, working for Hitachi

• Researching many RAS features

– A linux kprobes-related maintainer

• Ftrace dynamic kernel event (a.k.a. kprobe-tracer)

• Perf probe (a tool to set up the dynamic events)

• X86 instruction decoder (in kernel)

2

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Scalability Efforts for Kprobes

 Background Story
 Kprobes Blacklist Improvement

 Testing the Blacklist

 Qualitative versus Quantitative

 Scalability Efforts
 Enlarge the Hash Table

 Cache the Hash List

 Reduce Redundancy

 Conclusion and Discussion

3

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Scalability Efforts for Kprobes

 Background Story
 Kprobes Blacklist Improvement

 Testing the Blacklist

 Qualitative versus Quantitative

 Scalability Efforts
 Enlarge the Hash Table

 Cache the Hash List

 Reduce Redundancy

 Conclusion and Discussion

4

© Hitachi, Ltd. 2014. All rights reserved.

Kprobes basic implementation

• Kprobes uses a breakpoint and a singlestep on
copied code

Kernel code

(1)Copy original and

Modify rip-relative instruction

int3

(2) Put an int3

Kernel code

(2) Invokes User pre_handler

(1) Hit an int3

int3

Kprobes

pre

User handler

Kprobes

post (3)Set TF=1

Preparing

Running

(4) Trap single-stepping

(5) Fixup registers and return

 to next instruction

Copy buffer

Breakpoint
exception

Singlestep
exception

5

© Hitachi, Ltd. 2014. All rights reserved.

Kprobes Blacklist

• It is dangerous to probe on some functions, that are
called when a breakpoint/singlestep is executed

Kernel code

(2) Invoke handler

(1) Hit an int3

int3

Kprobes

pre

User handler

Kprobes

post
(3)Set TF=1

(4) Trap single-stepping

(5) Fixup registers and return

 to next instruction

Copy buffer

Kernel int3 handler

Probing here is safe,
because kprobes can

skip it (just do
singlestep and return)

These must be blacklisted with “__kprobes”.
6

Kernel Trap handler

Probing here can
cause endless loop on

int3 handling

Probing here is also
dangerous: kprobes can

detect it, but
cannot skip singlestep

© Hitachi, Ltd. 2014. All rights reserved.

Issues with “__kprobes” annotation

• Naming issue
– __kprobes means “prohibiting probes”,

 but it is misunderstood as “kprobes related functions”

– “What? This function is not a part of kprobes.”

• Code cache fuzzing
– __kprobes == “__attribute(section(“kprobes.text”))”

This means moving the function another text area.

– For the blacklisting, we don’t need to do that. Just need
the function entry address and the size.

• No module support
– In kernel module, adding __kprobes doesn’t change

anything.

7

© Hitachi, Ltd. 2014. All rights reserved.

Introducing NOKPROBE_SYMBOL() for blacklisting

• Represents correct meaning
– Mark only symbols verified as black or gray

– Similar usage to EXPORT_SYMBOL()

• Do not fuzz code cache
– Just save symbol address as data

– Do not use separated text section

• Easy to support kernel module
– It’s just data

• User can now refer the blacklist via debugfs

But which symbols are really black?

8

© Hitachi, Ltd. 2014. All rights reserved.

Testing the Blacklist

• Ingo’s suggestion

– The Blacklist is neither complete nor tested

enough.

• How to test it?

– One by one probe testing is not enough

– To completely ensure the stability, we need to

put kprobes on all functions in the kernel (and run

them)

• Usually, there are 30,000 - 40,000 functions in the

kernel.

9

Um, right.

© Hitachi, Ltd. 2014. All rights reserved.

Qualitative versus Quantitative issue

• Qualitative issue: “Does kprobes work fine?”

10

I’m fine!

© Hitachi, Ltd. 2014. All rights reserved.

• Qualitative issue: “Does kprobes work fine?”

• Quantitative issue:

Qualitative versus Quantitative issue

11

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

© Hitachi, Ltd. 2014. All rights reserved.

• Qualitative issue: “Does kprobes work fine?”

• Quantitative issue:

Qualitative versus Quantitative issue

12

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!
I’m fine!

© Hitachi, Ltd. 2014. All rights reserved.

• Qualitative issue: “Does kprobes work fine?”

• Quantitative issue: “Does kprobes scale up?”

Qualitative versus Quantitative issue

13

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!
I’m fine!

I’m fine!
I’m fine!

I’m fine!

I’m fine!

© Hitachi, Ltd. 2014. All rights reserved.

• Qualitative issue: “Does kprobes work fine?”

• Quantitative issue: “Does kprobes scale up?”

Qualitative versus Quantitative issue

14

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!

I’m fine!
I’m fine!

I’m fine!
I’m fine!

I’m fine!

I’m fine!

The Game has been changed …

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Scalability Efforts for Kprobes

 Background Story
 Kprobes Blacklist Improvement

 Testing the Blacklist

 Qualitative versus Quantitative

 Scalability Efforts
 Enlarge the Hash Table

 Cache the Hash List

 Reduce Redundancy

 Conclusion and Discussion

15

© Hitachi, Ltd. 2014. All rights reserved.

Multiple kprobes performance

• What happens if we put and enable kprobes

on a massive number of functions?

0

200

400

600

800

1000

1200

1400

1600

1800

2000

nopatch

nopatch

Elapsed time increases

Exponentially

Elapsed
Time (sec)

Not enough scalability to

 handle over 30k probes

16

Measured On
 Core i7 M640 (2.8GHz)

of enabled probes

© Hitachi, Ltd. 2014. All rights reserved.

Performance analysis with perf-tools

• Analysis target: kprobes scalability
– A kernel feature, not a user process

– Resource: CPU and Memory

– Run everywhere in kernel (no specific workload)

• Perf record options

– -a: all cpus, no specific process

– -e cycles,cache-misses,instructions
• Cycles: Time consuming

• Cache-miss: Memory consuming

• Instructions: CPU consuming

17

$ perf record -a -g --call-graph fp -e cycles -e cache-misses -e instructions sleep 60

© Hitachi, Ltd. 2014. All rights reserved.

Why no scalability?

• Using perf tools to clarify the bottleneck

• “get_kprobe” is the bottleneck

– And too many instructions are executed

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000

get_kprobe ftrace_ops_test

ftrace_lookup_ip kprobe_ftrace_handler

kprobe_trace_func ftrace_ops_list_func

Cycles %

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000

get_kprobe ftrace_lookup_ip

ftrace_ops_list_func kprobe_ftrace_handler

kprobe_trace_func

Instructions %

18

Most of the time spent in

Get_kprobe!

© Hitachi, Ltd. 2014. All rights reserved.

What the get_kprobe does?

• Look up a kprobe from a hash-table by

address

• Table size is too small

– It has just 64 entries for 30k.

 | head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 | hlist_for_each_entry_rcu(p, head, hlist) {
 86.33 | mov (%rax),%rax
 11.24 | test %rax,%rax
 | jne 60
 | if (p->addr == addr)
 | return p;
 | }

19

But, how large?

© Hitachi, Ltd. 2014. All rights reserved.

Increasing hash-table size

• Find the best size for hash-table with 10k probes

of probes 64 128 256 512 1024 2048 4096
0 0 0 0 0 0 0 0

2000 24 15 14 12 12 12 13
4000 154 107 99 91 97 94 99
6000 315 210 196 183 188 183 196
8000 563 349 305 290 290 285 305

10000 933 515 428 395 395 397 418

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000 8000 10000

64

128

256

512

1024

2048

4096

512 is the best

20

Elapsed
Time (sec)

© Hitachi, Ltd. 2014. All rights reserved.

Multiple kprobes performance take 2

• What happens if we put kprobes on a massive number

of functions? With 512 entries?

0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
la

p
s
e
d

 t
im

e
(s

e
c
)

Probe Activation

nopatch

enlarge

21

Still not scalable enough to

 handle over 30k probes

© Hitachi, Ltd. 2014. All rights reserved.

The scalability problem of hash-list

• Hash-list reduces the number of instructions,

but increases cache-miss

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

get_kprobe ftrace_lookup_ip

kprobe_trace_func optimized_callback

kprobe_ftrace_handler

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

get_kprobe ftrace_lookup_ip

kprobe_trace_func kprobe_ftrace_handler

copy_user_generic_string

% of instructions % of cache-miss

22

Still get_kprobe is heavy And get heavier

© Hitachi, Ltd. 2014. All rights reserved.

Hash-list: Why did cache-miss increase?

• Hash-list consists of a hash-table and lists

• Entries are scattered in kernel space

Pointer

Pointer

…

Pointer

entry entry

kprobe kprobe

entry

kprobe

Hash-table
IP address

Hash value

hash

Entry

Entry

Entry

Entry

Entry

Cache-miss

Cache-miss

Cache-miss

Cache-miss

…

Found!

23

© Hitachi, Ltd. 2014. All rights reserved.

Hash-list with cache

• To reduce “random” memory access

– Hardware does that! Why can’t software do that?

Pointer

Pointer

…

Pointer

entry entry

kprobe kprobe

Hash-table
IP address

Hash value

hash

…

Something

To

cache

Found!

24

© Hitachi, Ltd. 2014. All rights reserved.

Kpcache: Per-cpu Hash-list Cache

• Kpcache for caching hash-list
– Per-cpu

• Cache entries are replaced locally (no IPI needed)

– 4-way set-associative
• 4 entries for each cache entry

– Hashlist cache
• Hash value can be shared with hashlist and cache

– Round-robin Refill, invalidate-protocol

Pointer

Pointer

…

Pointer

entry entry

kprobe kprobe

Hash-table

…

co

unt

er

Pointer

IPaddr

co

unt

er

Pointer

IPaddr

…

…

…

…

co

unt

er

Pointer

IPaddr

4-way

IP address

Hash value

hash

Miss-hit counter == round robin counter 25

© Hitachi, Ltd. 2014. All rights reserved.

Cache Update/Invalidation

• Cache-miss always causes update (round robin)

• Kprobes-unregister causes invalidation

CPU0 CPU1 CPU2

hlist_del_rcu

synchronize

IPI

Local cache

 invalidate
Local cache

invalidate

Note that IPI handled after

all kprobes executed

Local cache

 invalidate

26

© Hitachi, Ltd. 2014. All rights reserved.

Multiple kprobes performance take 3

• What happens if we put kprobes on a massive

number of functions? With 512 entries and kpcache?

0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
la

p
s
e

d
 t

im
e

(s
e

c
)

Probe Activation

nopatch

enlarge

kpcache

Almost OK for handling

30k probes

27

© Hitachi, Ltd. 2014. All rights reserved.

Bottleneck Analysis Again

• Ftrace_lookup_ip is a dominant bottleneck

– Cycles and cache-miss show it.

0

10

20

30

40

50

60

70

80

90

100

ftrace_lookup_ip kprobe_trace_func

optimized_callback get_kprobe_cached

kprobe_ftrace_handler kprobe_dispatcher

0

10

20

30

40

50

60

70

80

90

100

ftrace_lookup_ip kprobe_trace_func

optimized_callback get_kprobe_cached

kprobe_ftrace_handler kprobe_dispatcher

Cycles % Cache-miss%
28

Now ftrace_lookup_ip is rising

© Hitachi, Ltd. 2014. All rights reserved.

Why ftrace matters?

• This test uses kprobes. Why does ftrace

matter?

• Since kprobes uses ftrace if the probe-point

is on the function entry

– We call it “ftrace-based kprobes”

29

© Hitachi, Ltd. 2014. All rights reserved.

Ftrace-based kprobe

• The entries of functions are hooked with ftrace.

– With -mfentry option(on x86), puts mcount call on the
1st byte of the functions. (conflict with kprobes)

– With FTRACE_OPS_FL_SAVE_REGS, ftrace saves
all registers, same as an interrupt handler

A kernel function Call fentry

Save all registers

Ftrace handler

Kprobes handler

Restore all registers

Call

Return
Call

ftrace

30

© Hitachi, Ltd. 2014. All rights reserved.

The other bottleneck – ftrace_lookup_ip

• ftrace-based kprobe adds new ftrace_ops for handling ftrace
mcount handler.

• In this case, ftrace starts checking which ftrace_ops should be
invoked from ip address

• Each ftrace hit causes 2 other hashtable checks!
– Mcount->ftrace->hash check->kprobe->hash check

Pointer

Pointer

…

Pointer

entry

Ftrace filter

Pointer

Pointer

…

Pointer

entry

kprobe

Hash-table

Hit!

31

ftrace_lookup_ip() get_kprobe()

IPaddr IPaddr

© Hitachi, Ltd. 2014. All rights reserved.

Again solving the issue!

• kprobes itself has its own hashlist(filter)

– Ftrace doesn’t need to check its hashlist. Then, skip it!

• FTRACE_OPS_FL_SELF_FILTER

– With this flag, ftrace skips checking filter(hashlist) and
always calls the ops->func.

– Kprobes always checks its own hashlist first, and if there
is no hit, just returns.

Ftrace filter

Pointer

Pointer

…

Pointer

entry

kprobe

Hash-table

Hit!
Skip!

If SELF_FILTER

 is set

32

IPaddr

© Hitachi, Ltd. 2014. All rights reserved.

Multiple kprobes performance take 4

• What happens if we put kprobes on a massive number of

functions? With 512 entries, kpcache, and self-filter?

OK for handling

30k probes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
la

p
s
e
d

 t
im

e
(s

e
c
)

Probe Activation

nopatch

enlarge

kpcache

skipchk

33

© Hitachi, Ltd. 2014. All rights reserved.

Final Bottleneck Analysis

• Win! There is no obvious bottleneck

– All functions consume less than 10%

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

kprobe_trace_func kprobe_ftrace_handler

get_kprobe_cached ftrace_regs_caller

ftrace_ops_list_func kprobe_dispatcher

0

10

20

30

40

50

60

70

80

90

100

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

kprobe_trace_func kprobe_ftrace_handler

get_kprobe_cached ftrace_regs_caller

kprobe_dispatcher optimized_callback

Cycles % Cache-miss%
34

No visible bottleneck!

© Hitachi, Ltd. 2014. All rights reserved.

The Result

• Finally, it took just 2254 sec for enabling

37222 probes.

– This test still takes a long time, but is possible to

finish!

35

© Hitachi, Ltd. 2014. All rights reserved.

Agenda: Scalability Efforts for Kprobes

 Background Story
 Kprobes Blacklist Improvement

 Testing the Blacklist

 Qualitative versus Quantitative

 Scalability Efforts
 Enlarge the Hash Table

 Cache the Hash List

 Reduce Redundancy

 Conclusion and Discussion

36

© Hitachi, Ltd. 2014. All rights reserved.

Discussion: The cons of kpcache

• kpcache consumes ”some” memory

– 32KB table, 4KB counter = 36KB/core

– 8core -> 256KB table, 32KB index

– 32core -> 1MB/128KB

– 256core -> 8MB/1MB = 9MB for cache

• (outdated)Recommend not to enable by

default

– Anyway, this feature is only good for stress

testing with massive multiple kprobes

– CONFIG_KPROBE_CACHE=n by default

37

© Hitachi, Ltd. 2014. All rights reserved.

A discussion on LKML

• CONFIG_KPROBE_CACHE is gone

– Makes the code simple and does not confusing

users.

– Anyway, it is easy to remove kpcache if needed.

• Requires just 6 lines of code.

38

--- a/kernel/kprobes.c

+++ b/kernel/kprobes.c

@@ -91,6 +91,7 @@ static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long

 static LIST_HEAD(kprobe_blacklist);

 static DEFINE_MUTEX(kprobe_blacklist_mutex);

+#ifdef CONFIG_KPROBE_CACHE
 /* Kprobe cache */

 #define KPCACHE_BITS 2

 #define KPCACHE_SIZE (1 << KPCACHE_BITS)

@@ -181,6 +182,11 @@ static void kpcache_invalidate(unsigned long addr)

 * So it is already safe to release them beyond this point.

 */

 }

+#else

+#define kpcache_get(hash, addr) (NULL)

+#define kpcache_set(hash, addr, kp) do {} while (0)

+#define kpcache_invalidate(addr) do {} while (0)

+#endif

© Hitachi, Ltd. 2014. All rights reserved.

Discussion: Kpcache in General?

• Can hash-cache technique be used in

general?

– Yes, if …

• the hash table is used so frequently

• the hash table is sparse

• the hash client can be pinned down to one cpu

• the hash can be invalidated via IPI

– > Perhaps, ftrace could be a good candidate

• Is it applicable for Userspace?

– Per-cpu is hard to implement in Userspace

– Per-thread/Shared cache may be possible
39

© Hitachi, Ltd. 2014. All rights reserved.

Conclusion

• Now kprobes is ready for a massive number
of probes

• “Perf” is great for the bottleneck analysis

• There are many ways to solve performance
bottlenecks

– Optimize hash-size
• If hlist-lookup requires many instructions

– Cache hash-list
• If hlist-lookup causes many cache-misses

– Remove redundancy
• If you find redundant code

40

© Hitachi, Ltd. 2014. All rights reserved.

Future work

• More testing

– Kprobes-fuzzer: Probe random addresses

– Test without ftrace-based kprobe (only with

native kprobes)

– Test kretprobe/jprobe too

41

Our Adventure has just started!
(Please stay tuned for next series!)

© Hitachi, Ltd. 2014. All rights reserved.

Trademarks

43

• Linux is a trademark of Linus Torvalds in the

United States, other countries, or both.

• Other company, product, or service names

may be trademarks or service marks of

others.

© Hitachi, Ltd. 2014. All rights reserved.

Appendix: Actual Performance Overhead

• UnixBench Index (4 CPUs)

44

No Probe Probe All Funcs Performance%

Dhrystone 5664.5 5440.0 96.0%

Whetstone 2314.9 2258.5 97.6%

Execl 2600.0 95.5 3.7%

FileCopy 1024 3128.2 58.0 1.9%

FileCopy 256 2098.8 34.9 1.7%

FileCopy 4096 6268.6 151.3 2.4%

Pipe 2209.4 39.0 1.8%

Context-switch 1475.7 26.9 1.8%

Process create 2100.8 72.3 3.4%

Shell (single) 2898.2 188.5 6.5%

Shell (8 process) 3479.8 177.1 5.1%

System Call 2576.2 51.1 2.0%

Total 2817.0 137.7 4.9%

