INTRODUCTION TO
COCCINELLE AND SMPL

Linuxcon Japan, 2016

Vaishali Thakkar

(vaishali.thakkar@oracle.com)

Prerequisites
e Source code of the Linux kernel version 4.6

e | atestversion of the Coccinelle

m Eitherinstalll it from the package manager [Coccinelle is available with
around 10 linux distros including Fedora, Ubuntu, Debian, ArchLinux etc.].

= Or build it from the source. (https://github.com/coccinelle/coccinelle)

Code Maintenance Issues

e Software evolution:
= Refactoring code to use newer APIs

- init timer (&cf->timer) ;

- cf->timer.function = omap cf timer;
- cf->timer.data = (unsigned long) cf;
+ setup timer (&cf->timer, omap cf timer, (unsigned long)cf) ;

= Need to find all parts of the code that need updating
m Process should be fast, reliable and systematic

= However, things are never straightforward

Code Maintenance Issues

e Software evolution:
= Refactoring code to use newer APIs
= Need to find all parts of the code that need updating
m Process should be fast, reliable and systematic
= However, things are never straightforward

o Software robustness:
= Are the programmers following the standards?
= |s the code accounting for all errors that can take place?
m |s the written code overly defensive?

Code Maintenance Issues

e Software evolution:
= Refactoring code to use newer APIs
= Need to find all parts of the code that need updating
m Process should be fast, reliable and systematic
= However, things are never straightforward

e Software robustness:
= Are the programmers following the standards?
= |s the code accounting for all errors that can take place?
m |s the written code overly defensive?

e The Human Factor:
= Mistakes can always happen

Coccinelle

e Program matching and transformation tool

Independent of the compilation process

e Very intuitive patch like style

Used by several communities:

= Linux Kernel: 5K+ patches
= QEMU: 200+ patches
= systemd: 80+ patches

Semantic Patch Language (SmPL)

Abstract C-like grammar

Independent of the compilation process

e Metavariables are used to abstract over sub-terms in code

= |f an expression matches within a pattern, it can be tracked throughout its
presence in the code e.g. variable names, typedefs

e “.”Iisused to abstract over code sequences

= Used asdon’t care
= Variants are used as syntactic sugar for + and ? in regular expressions

e Lines can be annotated with {-,+,*}
= Transformations are described using patch-like style (-/+)
= Matching employs *

Example: Using BIT macro

e Bit maskingis preferrably done using the BIT macro

BUILD BUG ON (max >= (1 << 16));
+ BUILD BUG ON(max >= (BIT(16)));

Example: Using BIT macro

e Bit maskingis preferrably done using the BIT macro

BUILD BUG ON (max >= (1 << 16));
+ BUILD BUG ON(max >= (BIT(16)));

e Code we should focus on for building a semantic patch:

- 1 << 16
+ BIT(16)

Example: Using BIT macro

e Bit maskingis preferrably done using BIT macro

BUILD BUG ON (max >= (1 << 16));
+ BUILD BUG ON(max >= (BIT(16)));

e Code we should focus on for building a semantic patch:

- 1 << 16
+ BIT(16)

e Is 16 important here?

Example: Using BIT macro (Contd.)

e Do we care about number of shifts?

if (opts & (1 << REISERFS_LARGETAIL))
+ if (opts & (BIT(REISERFS_LARGETAIL)))

Example: Using BIT macro (Contd.)

e Do we care about number of shifts?

- if (opts & (1 << REISERFS_LARGETAIL))
+ if (opts & (BIT(REISERFS_LARGETAIL)))

e Use metavariables

@@

constant c¢;
@@

-1 << ¢
+BIT (c)

Example: Using BIT macro (Contd.)
e Constant will capture numbers and defined constants

e What if we had something like

1 << (31 - inode->i_sb->s blocksize bits)

Example: Using BIT macro (Contd.)

e Constant will capture numbers and defined constants

e What if we had something like

1 << (31 - inode->i_sb->s blocksize bits)

e expression to the rescue

@@
expression E;
@@

-1 << E
+BIT (E)

Metavariables
Example: x->y = m->n + 1;

e Constant: match patterns on values and constants
e.g. numbers like 2,3 and defined constants 1in
a code

Metavariables
Example: x->y = m->n + 1;

e Constant: match patterns on values and constants
e.g. numbers like 2,3 and defined constants 1in
a code

e Expression: match patterns on constants and complex subterms
e.g.struct->elem, x-y, func(arg) etc

Metavariables
Example: x->y = m->n + 1;
e Constant: match patterns on values and constants

e.g. numbers like 2,3 and defined constants 1in
a code

e Expression: match patterns on constants and complex subterms
e.g.struct->elem, x-y, func(arg) etc

e |dentifier: a structure field, a macro, a function, or a variable

Metavariables
Example: x->y = m->n + 1;
e Constant: match patterns on values and constants

e.g. numbers like 2,3 and defined constants 1in
a code

e Expression: match patterns on constants and complex subterms
e.g.struct->elem, x-y, func(arg) etc.

e |dentifier: a structure field, a macro, a function, or a variable

e Statement: match patterns which do not return a value
eg.1f, while, break etc

Metavariables

e Constant: match patterns on values and constants
e.g. numbers like 2,3 and defined constants in
a code

e Expression: match patterns on constants and complex subterms
e.g. struct->elem, x-y, func(arg)

e |dentifier: a structure field, a macro, a function, or a variable

e Statement: match patterns which do not return a value
e.g.1f, while, break etc

e Type: match patterns for the type of variables/functions
e.gint, boolean, float etc

Transformation specification
e -inthe leftmost column for something to remove
e +inthe leftmost column for something to add

e *inthe leftmost column for something of interest
= Cannot be used with + and -.

e Spaces, newlines that are irrelevant.

Spatch

e Coccinelle’s command-line tool

e To checkthat your semantic patch is valid:

spatch --parse-cocci mysp.cocci

e To runyour semantic patch:

spatch --sp-file mysp.cocci file.c

spatch --sp-file mysp.cocci --dir directory

Exercise 1
e Save the semantic patch to bitmask.cocci. [slide 11 and 13]

e Run itusing spatch on any particular directory or on whole kernel.
spatch --sp-file bitmask.cocci --dir directory

e Redirect results to an output file for an inspection.

e Isit ok to use BIT macro in every case? Should we want to restrict it
for the files which are already using it?

Exercise 2

e Parentheses are not needed around the bitwise left shift
operations likeinu32 val = (1 << 31);.

e Write a semantic patch to remove these parentheses.
e Run the semantic patch over the directory drivers/net/wireless/ .

e Some other cases to think about:

= Extra parentheses around the function arguments
= Using the same identifier on the left and right side of the assignment

Using BIT macro (Revisited)

e Example:

diff -u -p a/arch/mips/pci/pci-mt7620.c b/arch/mips/pci/pci-mt7620.c
--- a/arch/mips/pci/pci-mt7620.c
+++ b/arch/mips/pci/pci-mt7620.c

@e@ -37,11 +37,11 e@

#define PDRV_SW_SET BIT (23)
#H#define PPLL_DRV 0xa0
-##fdefine PDRV_SW_SET (1<<31)
-#define LC_CKDRVPD (1<<19)
-#define LC_CKDRVOHZ (1<<18)
-#define LC_CKDRVHZ (1<<17)
-#define LC CKTEST (1<<16)
+#define PDRV_SW_SET (BIT(31))
+#define LC_CKDRVPD (BIT(19))
+#fdefine LC_ CKDRVOHZ (BIT(18))
+#define LC_CKDRVHZ (BIT(17))
+H#define LC CKTEST (BIT(16))

Using BIT macro (Revisited)

e Example:

diff -u -p a/arch/mips/pci/pci-mt7620.c b/arch/mips/pci/pci-mt7620.c
- a/arch/mips/pci/pci-mt7620.c
+++ b/arch/mips/pci/pci-mt7620.c

@ -37,11 +37,11 @@

#define PDRV_SW_SET BIT (23)
#H#define PPLL_DRV 0xa0
-##fdefine PDRV_SW_SET (1<<31)
-#define LC_CKDRVPD (1<<19)
-#define LC_CKDRVOHZ (1<<18)
-#define LC_CKDRVHZ (1<<17)
-#define LC CKTEST (1<<16)
+#define PDRV_SW_SET (BIT(31))
+#define LC_CKDRVPD (BIT(19))
+#fdefine LC_ CKDRVOHZ (BIT(18))
+#define LC_CKDRVHZ (BIT(17))
+H#define LC CKTEST (BIT(16))

e Would like to restrict the bitmask semantic patch to files that are
already using the BIT macro?

Using BIT macro (Revisited)

Example:

o
-#define LC_ CKDRVPD (1<<19)
-#define LC CKDRVOHZ (1<<18)
+#define LC_CKDRVPD (BIT(19))
+#define LC CKDRVOHZ (BIT(18))
Semantic patch:

[)

@usesbit@
@@
BIT(...)

@depends on usesbit@
expression E;
@@

- 1 << E
+ BIT(E)

Isomorphism

Coccinelle captures code as defined in your rule
Valid variants of your defined pattern can exist
Cumbersome to list them all in your rule/s

Examples:
m ¥ == NULL and !x
m sizeof (struct 1) * e ande * gizeof (struct 1)

Isomorphisms can handle such variations

Rules defining isomorphisms exist in standard.iso

Isomorphism Examples

Example 1:

Expression
@ is null @
expression X;

@@

X == NULL <=> NULL == X => X

Example 2:

Expression

@ drop_cast @
expression E;
pure type T;
@@

(T)E => E

Exercise 3

Consider the example of DIV_ROUND_UP.

The macro is defined in linux/kernel.h. So, it depends on this
header file.

Expand the semantic patch you wrote in exercise 2 using 'depends
on'.

Review the output given by updated semantic patch.

Exercise 4

e To avoid code duplication or error prone code, the kernel provides
macros such as DIV_ROUND_UP.

e The definition of the DIV_ROUND_UP goes like this:
DIV_ROUND_UP (n,d) (((n) + (4) - 1) / (4d))

e Write the semantic patch for replacing the pattern (((n) + (d) - 1) /
(d)) with DIV_ROUND_UP.

e Redirect results to an output file for an inspection.

Example: setup_timer

e The function setup_timer combines the initialization of a timer
with the initialization of the timer's function and data fields.

init_ timer (&cf->timer) ;
cf->timer.function = omap_ cf timer;
- cf->timer.data = (unsigned long) cf;
+ setup timer (&cf->timer, omap cf timer, (unsigned long)cf);

e Why setup_timer?

e How Coccinelle can help here?

setu p_timer: case one

Example:

@@

- init timer (&cf->timer) ;

- cf->timer.function = omap_cf timer;

- cf->timer.data = (unsigned long) cf;

+ setup timer (&cf->timer, omap_ cf timer,

Semantic patch

@case one@

expression e, func,da;
@@

- init timer (&e);

+ setup timer (&e, func, da);
- e.function = func;

- e.data = da;

(unsigned long)cf) ;

setu p_timer: case one

Semantic patch:

@case_one@
expression e, func,da;
@@

- init_timer (&e);
+ setup timer (&e, func, da);

- e.function = func;
- e.data = da;

e Isthis the only case where we can use setup_timer?

e Isit necessary that the call to init_and the initialization of the

function and data fields always occur in the order shown in the
example?

setup_timer: case two

Example:

init_ timer (&hose->err_ timer) ;

- hose->err timer.data = (unsigned long)hose;

- hose->err timer.function = pcibios_enable err;

+ setup timer (&hose->err timer, pcibios_enable err, (unsigned long)hose);

Semantic patch:

@case two@
expression e, func,da;
@@

- init_timer (&e);

+ setup timer (&e, func, da);
- e.data = da;

- e.function = func;

setup_timer: comparing both cases

Case one:

@case_one@
expression e, func,da;
@@

- init timer (&e)

+ setup timer (&e, func, da);
- e.function = func;

- e.data = da

Case two:

@case_two@
expression e, func,da;
@@

-init timer (&e)

+setup_ timer (&e, func, da);
-e.data = da

-e.function = func;

Disjunctions
e Asequence of patterns between (... | ...).
e Patterns checked in order and the first that matches is chosen.

e Combining case one and case two in our example:

@case one and two@
expression e, func, da;
@@

-init timer (&e);
+setup timer (&e, func, da);

(

-e.function = func;
-e.data = da;

I

-e.data = da;
-e.function = func;

)

Exercise 5

e Implement the semantic patches for both cases of the setup_timer.
Compare the results.

e Implement the rule combining case one and case two using
disjunction.

e Think about why do we need to use disjunctions? Can we use
multiple rules?

e Checktheresults. Does it cover all the cases that were matched by
the separate rules?

e Grep for theinit_timer and check if the rule with disjunction covers
everything?

setup_timer(Contd.)

Example:

init timer (&np->timer);
np->timer.expires = jiffies + 1*HZ;
np->timer.data = (unsigned long) dev;
np->timer.function = rio_ timer;

add timer (&np->timer);

e Does previous rule covered all cases?

e Isit necessary that the call to init_timer and the initialization of the
function & the data field always occurs in a contiguous manner?

Dots

Problem:

= Sometimes it is necessary to search for multiple related code fragments.

Solution:

= Specify patterns consisting of the fragments of code separated by arbitrary
execution paths.

= Specify constraints on the contents of those execution paths.

setup_timer: case three

Semantic patch:

@case_ three@
expression e, func,da;
@@

- init timer (&e)

+ setup_ timer (&e, func, da);

- e.data = da
- e.function = func;

Example:

- init timer (&np->timer);

+ setup_timer (&np->timer, rio_timer, (unsigned long)dev) ;
np->timer.expires = jiffies + 1*HZ;

- np->timer.data = (unsigned long) dev;

- np->timer.function = rio_timer;
add_timer (&np->timer);

Using dots

Semantic patch:

@case_ three@

expression e, func,da;

@@

- init timer (&e)

+ setup timer (&e, func, da);

- e.data = da
- e.function = func;

e '..."matches all possible execution paths from the pattern before to
the pattern after

e The patterns before and after cannot appear in the region matched
by “...” (shortest path principle).

Example: Compressing lines for immediate return

e Inthe following code last two lines could be compressed into one:

int bytes written;
ulé link speed;

link speed = rtw _get cur max rate(padapter) / 10;
bytes written = snprintf (command, total len, "LinkSpeed %d", link speed) ;
return bytes written;

Compressing lines for immediate return

e Inthe following code last two lines could be compressed into one:

int bytes written;
ulé link speed;

link speed = rtw _get cur max rate(padapter) / 10;
bytes written = snprintf (command, total len, "LinkSpeed %d", link speed) ;
return bytes written;

int bytes written;
ulé link speed;

link speed = rtw _get cur max rate(padapter) / 10;
return snprintf (command, total len, "LinkSpeed %d", link speed);

Dots: Compressing lines for immediate return

Example:

bytes written = snprintf (command, total len, "LinkSpeed %d4d",
+ return snprintf (command, total len, "LinkSpeed %d4",
link speed);
return bytes written;

Semantic patch:

@@
expression r;
identifier £;

@@
-r = £(...)
+return

f(...);
-return r;

Exercise 6

Implement the rule for case three of setup_timer using dots. [Slide
40]

e Run the patch over the kernel code and investigate the result.

e Think about the case three like pattern for the case two.

Implement the rule for those kind of patterns.

e Try to limit the number of rules.

Exercise 6(Contd.)

Example:

init_ timer (&sharpsl pm.ac_timer) ;
sharpsl pm.ac timer.function = sharpsl ac timer;

init timer (&sharpsl pm.chrg full timer);
sharpsl pm.chrg full timer.function = sharpsl chrg full timer;

e |sit even necessary that the initialization of the data field always
occurs?

e Expand the semantic patch to include such cases.

Exercise 7

Example:

int bytes written;
ulé link speed;

link speed = rtw_get cur max rate(padapter) / 10;
return snprintf (command, total_ len, "LinkSpeed %d", link speed);

e Do we really need the variable bytes_written after compressing the
lines?

e Expand the semantic patch[slide 44] to remove the variable along
with compressing lines.

Hint: Ensure that the variable is not used anywhere else.

Using dots(Contd.)

Semantic patch:

@case_ three@
expression e, func,da;
@@

- init timer (&e)

+ setup_ timer (&e, func, da);

- e.data = da
- e.function = func;

e Checkthe properties of the matched statement sequence

e Does the rule look correct? Or do we need to ensure something?

Using dots with when

e Dots can be modified with a when clause, indicating a pattern that
should not occur

@case_ three@
expression el, e2, e3, e4, func, da;
@@

-init timer (&el);
+setup timer (&el, func, da);

. when != func = e2
when != da = e3

-el.data = da;
-el.function = func;

when
e Keyword used to indicate conditions on execution path
e As seen before, controls the behavior of “...”

e Can be coupled with:

= strict: force condition on every execution path (including failures)
= forall: force condition on every execution path (excluding failures)
m exists: is there an execution path that matches the pattern?

= any: allow the patterns specified...

= conditions specified by the user

More use of dots

e Two possible modifiers to the control flow for ellipses:

ellipses is optional

2. <+...P...+>Iindicates that the pattern in between the ellipses
must be matched at least once, on some control-flow path.

= The +isintended to be reminiscent of the + used in regular expressions.

More use of dots(Contd.)

Example:

@r@

@@

-if (...) |
P60 o

return ...;
e t>

}

Meaning:

e To remove all ifs that contain at least one return.

More use of dots(Contd.)

Example:

@r@
@@
-if (...) |
Zo oo

return ...;
500

}

Meaning:

e Toremove all ifs

Exercise 8

1. Implement the example of 'compression of lines for the immediate
return problem’.

2. The semantic patch for removing unused variables only matches a
variable declaration when the declaration does not initialize the
variable.

3. Extend the complete semantic patch so that it also removes
unused variables that are initialized to a constant.

Exercise 9
In the following code, when x has any pointer type, the casttou8 *, orto

any other pointer type is not needed.

kfree((u8 *)x);

e Write a semantic patch to remove such casts.

e Consider generalizing your semantic patch to functions other than
kfree.

e Are there any patterns that can benefit from using disjunctions?

Coccicheck

e A Coccinelle-specific target which is defined in the top level
Makefile.

e Four basic modes
= Patch mode
= Context mode
= Org mode
= Report mode

e Default output: Report mode

e Command that can be used for specifying particular mode:
make coccicheck MODE=patch

Modes for the Coccinelle script

e Four basic modes

= Patch mode: proposes a fix when possible.

@@ -582,8 +580,7 @@ static int iss net_ configure(int index,
return 1;

}
init_ timer (&lp->tl);
lp->tl.function = iss_net user timer expire;

+ setup_timer (&lp->tl, iss_net_user timer expire, 0OUL);

return 0;

Modes for the Coccinelle script

e Four basic modes

= Context mode:
1. highlights lines of interest and their context in a diff-like style.
2. Lines of interest are indicated with '-.

@@ -582,8 +580,7 @@ static int iss net configure(int index,
return 1;

}
init timer (&lp->tl);
lp->tl.function = iss net user timer expire;

setup timer (&lp->tl, iss net user timer expire, O0OUL);

return 0;

Modes for the Coccinelle script

e Four basic modes

= Org mode: Generates a report in the Org mode format of Emacs.

* TODO [[view:/home/linux-next/linux/arch/sh/drivers/pci/common.c::face=ovl-facel
::cole=12] [Use setup timer function.]]

[[view: /home/linux-next/linux/arch/sh/drivers/pci/common.c: :face=ovl-facel::1linb=
[/home/linux-next/linux/arch/sh/drivers/pci/common.c::109]]

* TODO [[view:/home/linux-next/linux/arch/sh/drivers/pci/common.c::face=ovl-facel
::cole=12] [Use setup timer function.]]

[[view: /home/linux-next/linux/arch/sh/drivers/pci/common.c::face=ovl-facel::linb=
[/home/linux-next/linux/arch/sh/drivers/pci/common.c::115]]

Modes for the Coccinelle script

e Four basic modes

= Report mode: Generates a list in the following format
file:line:column-column: message

/home/linux-next/linux/arch/sh/drivers/pci/common.c:108:2-12: Use setup_ timer fun
/home/linux-next/linux/arch/sh/drivers/pci/common.c:114:2-12: Use setup timer fun
/home/linux-next/linux/arch/sh/drivers/push-switch.c:81:1-11: Use setup timer fun
/home/linux-next/linux/arch/x86/kernel/pci-calgary 64.c:1010:1-11: Use setup_ time
line 1011.

/home/linux-next/linux/arch/powerpc/oprofile/op _model cell.c:682:1-11: Use setup_
line 683.

setup_timer again

Problem:

m Whatif init timeriscalledin one function and data field is initialized in
another function?

m Will it be safe to use setup_timer inthat case?

Solution:

= How about giving warning in such cases?

setup_timer again
e We need two rules to match both parts

Semantic patch:

@rl@
identifier f;
@@

£(...) { ...

init timer(...)

}

@r2@

identifier g;

struct timer list t;
expression e;

@@

gl(...

) { ...
t.data =

e

}

setup_timer again

e We want to match 2 different functions. So, let's avoid function
name overriding.

Semantic patch:

@rl exists@
identifier f;
@@

£(...) { ...

init timer(...)

}

@r2 exists@
identifier g != rl.f;
struct timer list t;
expression e;

@@

Position variables

e Position metavariables can be used to store the position of any
token, for later matching or printing.

e Inthecaseof setup_timer we wantto use the position of
init_timer sothat Coccinelle can give warning at such code.

Position variables

Example:

@rl existse@
identifier £f;
position p;
@@

£(...) { ...
init timerep(...)

}

@r2 existse@
identifier g != rl.f;
struct timer list t;
expression e8;

@@

g(...) { ...
t.data = e8

Embedding python script

e Coccinelle can embed Python code. Python code is used inside
special SmPL rule annotated with script:python.

e Python rules inherit metavariables, such as identifier or token
positions, from other SmPL rules.

e The inherited metavariables can then be manipulated by Python
code.

Python script with the warning

Example:

@rl existse@
identifier £f;
position p;
@@
f(...) {

init timerep(...)

}

@r2 exists@
identifier g != rl.f;
struct timer list t;
expression e;
@@
g(...) {

t.data = e

}

@script:python depends on r2e@

p << rl.p;

@@

print "Data field initialized in another function. Dangerous to use
setup_timer %s:%s" % (p[0] .file,p[0].line)

Python script without printing warning

Example:

@rl existse@
identifier £f;
position p;
@@
£(...) { ...

init timerep(...)

}

@r2 exists@
identifier g != rl.f;
struct timer list t;
expression e;
@@
g(...) { ...

t.data = e

}

@script:python depends on r2@
p << rl.p;

@@

cocci.include match (False)

Exercise 10

e When searching for things, rather than transforming them, it may
be useful to generate the output in a variety of formats. This can be
done using the interface to python (ocaml is also available).

e Position variables are useful in this context, because they provide
the file name and line number of various program elements.

Exercise 10 (Contd.)

e Consider the following patch discussed earlier:

@@
expression r;
identifier £;

@@
-r = £(...)
+return

f(...);
-return r;

e Following python code is intended to print the file name and line
numbers of the assignment and erroneous test, respectively:

@script:python@
pl << r.pl;

P2 << r.p2;

@@

print pl[0] .file, pl[0] .line, p2[0].line

Exercise 10 (Contd.)

Do this:

e Create a semantic patch consisting of the original patch rule shown
on the previous page followed by the python code specified in the
last slide.

e Give namerto therule and remove the transfromation.

e Add position variables p1 and p2.

e Attach position variables to the relevant code.

e Testthe semantic patch and investigate the results.

Exercise 11

e We have seen that * can be used to highlight items of interest.

e Repeat the previous exercise, this time without using python, but
instead annotate the original code pattern with * rather than

performing transformations.

e How is the result different than the result produced when using
python?

Exercise 12
e Implement the setup_timer case with the python code.

e Combine all rulesin a single script and then try to run it. Observe
how output changes.

e Try to reorder the rules in a semantic patch and then observe the
changes.

e Do we also need a rule for the immediate call of init_timer,
intialization of data and function fields? If yes, then why? If no, then

why?

Hint: Consider performance and speed of the semantic patch.

Feature summary

e Metavariables and Isomorphisams

e Different uses of ...

e When

e Named rules and metavariable inheritance
e Position variables

e Scripting through Python/Ocaml

e Different modes for the Coccinelle script

Useful links

= Source code of the Coccinelle: "https://github.com/coccinelle/coccinelle"

= Grammar and features: "http://coccinelle.lip6.fr/docs/options.pdf"

= Documentation: "Documentation/coccinelle.txt"

Project: "http://coccinelle.lip6.fr/"

Spgen: "https://github.com/coccinelle/coccinelle/tree/master/tools/spgen”

THANK YOU!

Acknowledgement

= Julia Lawall [Developer and maintainer of Coccinelle]

= Aya Mahfouz [Outreachy intern, round 9]

