
1

Kernel Protection Using Hardware-
Based Virtualization

Jun Nakajima and Sainath Grandhi



2

Legal Disclaimer
� INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR 

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 
EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO 
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR 
USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR 
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY 
RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS. 

� Intel may make changes to specifications and product descriptions at any time, without notice.

� All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

� Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate 
from published specifications. Current characterized errata are available on request.

� Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other 
countries. 

� *Other names and brands may be claimed as the property of others.

� Copyright © 2016 Intel Corporation.



3

Agenda

• Hardware-Based Virtualization

• Monitoring/Protecting the Kernel in Virtualization

• Policy and Incident Handling

• Architecture and Implementation

• VM and Bare Metal

• Beyond Kernel Protection



4

Physical Host Hardware

Hardware Virtual Machines (VMs)

GFX

MemoryProcessors

Keyboard / Mouse

Graphics

StorageNetwork

Operating System

...App App App

Without VMs: Single OS owns 
all hardware resources

VM1VM0

Guest OS0

App AppApp

... Guest OS1

App

Virtual Machine Monitor (VMM)

Physical Host Hardware

With VMs: Multiple OSes 
share hardware resources

A new
layer of

software...

AppApp



5

Virtual Machine Monitor (VMM)

CPUn

MemoryProcessors I/O Devices

CPU0

Storage

Network

Physical
Platform

Resources

Processor Virtualization Memory Virtualization I/O Device Virtualization
PMEM 

Translation
I/O DMA

Remapping
Interrupt

Remapping
I/O Device
Emulation

Higher-level VMM Functions:
Resource Discovery / Provisioning / Scheduling / User InterfaceVMM

(a.k.a.,
hypervisor) State 

Control
Context 

Switching

…
Virtual

Machines
(VMs)

VM0

OS

Apps

VM1

OS

Apps

VM2

OS

Apps

VMn

OS

Apps

Linux Host/KVM

Virtualization Non-Root Mode (Guest)



6

Memory:
• Monitoring
• Write-protection (RO)

Processor (VCPU):
• CPU control 

monitoring/locking
• Extensions for security

IOMMU:
• Monitoring
• Write-Protection

Overview of Kernel Protection

Processor Virtualization Memory Virtualization I/O Device Virtualization

PMEM 
Translation

I/O DMA
Remapping

Interrupt
Remapping

I/O Device
Emulation

Higher-level VMM Functions:
Resource Discovery / Provisioning / Scheduling / User Interface

Linux Host/KVM

State 
Control

Context 
Switching

Linux Kernel

Apps

RO

VCPUs

RO

IOMMUExt.

VM (Guest)



7

Benefits of Virtualization-Based Kernel Protection 

More monitoring and isolation capabilities in virtualization than in native:
• Monitoring, isolation, and protection – Hypervisor as “Ring -1” or Virtualization Root 

Mode
• Security feature extensions to the CPUs so that the kernel can harden itself

No or minimal modifications to guest Linux kernel:
• Can be implemented inside the hypervisor (e.g. KVM)
• Hot patches

Applicable to bare metal kernel:
• Bare-metal Linux can de-privilege itself to become Virtualization Non-Root Mode
• Additional protection when running bare-metal containers, HPC without overhead



8

Kernel Memory Protection

• Kernel can write-protect its own code or 
data by RO (Read-Only) permission for 
the page

• But the page can be modified by:
• Changing the permission, or
• Establishing different mapping with RW 

permission
• H/W-based virtualization can add 

enforcement by:
• RO permission for GPA* to HPA translation
• VM exit upon attempt to write the page

Linux Kernel

Apps

RO

Page Tables

RO

RW

RW

CPUn

MemoryProcessors

CPU0

GPA to HPA 

GPA

EPT or NPT

RO

GPA

VM (Guest)

*:GPA: Guest Physical Address, HPA: Host Physical Address



9

Kernel Memory Protection (cont.)

Examples of code/data to monitor or protect:
• Kernel code and page tables entries for such mappings
• Syscall table
• IDT (Interrupt Descriptor Table)
• …
• Various data structures, e.g. kernel data declared as “const ...”



10

Protecting CPU State 
Control
Linux kernel does not change the setting for 
CPU control at runtime:
• Control Registers

• CR0 – PG, CD, WP, PE, 
• CR4 – UMIP, VMXE, SMXE, SMEP, SMAP, 

PKE, 
• MSRs

• EFER
• PAT
• MISC_ENBLE

Linux Kernel

Apps

CPUn

Processors

CPU0

VCPUs:
CR0, CR4, MSRs, 

VM (Guest)



11

Security Feature Extensions to CPUs

• Implement new or future H/W security features in virtualization so that the current or 
older CPUs can take advantage of them

• Example: UMIP (User-Mode Instruction Prevention) – can be mostly emulated by the exiting H/W 
virtualization feature

• Para-virtualization
• Requires modifications to the kernel



12

Protecting IOMMU State Control

Setup once and never modified:
• Root Table Address
• Invalidation Queue Address
• Interrupt Remapping Table Address

Feature Enabling:
• DMA Translation
• Interrupt Remapping
• Queued Invalidation



13

Policy and Incident Handling

Monitor and protect specific kernel data/code and system resources (assets):

• <Which asset to monitor> := Bits of a control register, MSRs, memory pages, or I/O 
ports, 

• <Permission> := RO (Read-Only), XO (Execution Only), NA (No Access Allowed)
• <Action(s)> := Omit the attempt and log, Allow the attempt and log, 

<Which asset to monitor>, <Permission>, <Action upon Permission Violation>



14

Architecture Overview (KVM Guests Only)

Extend KVM:
• Kernel Monitoring/Protection

Linux Kernel
KVM

VM0

OS

Apps

VM1

OS

Apps

Physical Host Hardware

Kernel Monitoring/Protection

User Process User Process

Virt. Non-Root Mode



15

Architecture Overview (Host and KVM Guests)

Extend KVM:
• Kernel Monitoring/Protection

Thin Hypervisor for bare metal:
• Integrated into KVM
• Does not require QEMU
• Activated/deactivated at 

runtime from user-level

Linux Kernel
KVM

VM0

OS

Apps

VM1

OS

Apps

Physical Host Hardware

Platform Protection

User Process User Process

Virt. Non-Root Mode

Passthrough

Thin Hypervisor

Kernel Monitoring/Protection



16

Bare-Metal Linux in Virtualization Non-Root Mode

Bare-metal Linux can run like the native with Virtualization Non-Root Mode enabled:
• Pass-through

• I/O devices, interrupt controllers, timers, power management, – No VM exits (Done by “VM Exit 
Control”)

• Identity mapping (+ protection):
• EPT (Extended page tables) – EPT(GPA) == HPA
• Use the bare metal kernel – No additional memory for virtualization (except EPT)

• Platform protection
• Prevent access to platform resources – Platform-specific MSRs, ports, I/O spaces



17

Switching from Virt. Non-Root to KVM (Virt. Root)

Go back to Virtualization Root 
Mode to run guests on top of 
KVM:
• Avoid nested virtualization

Current Implementation:
1. VM Exit in the kernel (e.g

VMXOFF instruction)
2. VM Exit handler for the bare-

metal kernel
3. IRET to the next instruction 

that caused the VM exit (one 
after VMXOFF) 

Linux Kernel
KVM

VM0

OS

Apps

VM1

OS

Apps

Physical Host Hardware

Platform Protection Kernel Monitoring/Protection

User Process User Process

Virt. Non-Root Mode

Passthrough

VM 
Entry/Exit



18

Prototype Implementation of “Non-Root Mode Bare-
Metal Linux” 
• Add new IOCTLs to KVM

• De-privilege and privilege the current CPU 
(switch_and_exit)

• Start running in Virtualization Non-Root Mode from the 
next instruction in the KVM module

• Generate a dedicated VM exit to go back to 
Virtualization Root Mode

• Separate VM exit handler
• Monitoring and protection
• EPT is constructed in advance or at runtime (optional)

• Code changes are well contained in KVM module

VMCS.GUEST_RIP

switch_and_exit

User Process

Construct VMCS

VM Entry point 
(De-privileged)

KVM module

/dev/kvm
De-privileging Case



19

Comparison of Overhead
Using lmbench (micro benchmark) and kernel build

• Kernel build
• 1.2 % overhead with bare-metal kernel in 

Virtualization Non-Root Mode

• lmbench

microsecond

*KVM guest - qemu-system-x86_64 -enable-kvm -cpu host -
smp 4 -m 4096 -hda image_file -serial stdio

lat_sys_call -P 1 -W 1000000 -N 1000 null
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

null read write stat fstat open

lmbench3 Results

Bare Metal Non-Root Bare Metal KVM Guest



20

Beyond Kernel Protection

Debugging:
• Monitor specific behaviors or events for debugging

More operations are available in virtualization (Virtualization Non-Root Mode):
• PML (Page Modification Logging)

• Can be used to monitor memory activities, which guest physical memory pages are modified frequently
• #VE (Virtualization Exception)

• Additional exception regarding GPA to HPA translation (access to non-present guest physical memory)

Hot patching and Intercepting exceptions (examples):

• Intercept #DE in the kernel (oftentimes used as DoS) – Patching in the KVM module without modifying the 
kernel code



21

Current Status and Next Step

Current Status:
• PoC has been done (< 1000 lines of code changes to KVM module only)
• Adding policies and actions
• Planning to share the patches and findings with the community
• Feedbacks are welcome

Next Step:
• Reflect feedback to the design and patches
• Send out RFC



Q & A



23

• Monitor and protect the system resources and critical kernel data/code

• Extend the CPU features so that the kernel can harden itself

• Implement the above with no or minimal modifications to the core kernel

• Make it available both to VMs and bare-metal Linux 

System resources (examples):

• CPU control (determined by the control registers, MSRs, )

• IOMMU

• Platform resources (e.g. system PCIe devices such as memory controllers, BIOS, )
23

Goals of Kernel Protection


