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Virtual Machine Monitor (VMM)
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Memory:
• Monitoring
• Write-protection (RO)

Processor (VCPU):
• CPU control 

monitoring/locking
• Extensions for security

IOMMU:
• Monitoring
• Write-Protection

Overview of Kernel Protection
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Benefits of Virtualization-Based Kernel Protection 

More monitoring and isolation capabilities in virtualization than in native:
• Monitoring, isolation, and protection – Hypervisor as “Ring -1” or Virtualization Root 

Mode
• Security feature extensions to the CPUs so that the kernel can harden itself

No or minimal modifications to guest Linux kernel:
• Can be implemented inside the hypervisor (e.g. KVM)
• Hot patches

Applicable to bare metal kernel:
• Bare-metal Linux can de-privilege itself to become Virtualization Non-Root Mode
• Additional protection when running bare-metal containers, HPC without overhead
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Kernel Memory Protection

• Kernel can write-protect its own code or 
data by RO (Read-Only) permission for 
the page

• But the page can be modified by:
• Changing the permission, or
• Establishing different mapping with RW 

permission
• H/W-based virtualization can add 

enforcement by:
• RO permission for GPA* to HPA translation
• VM exit upon attempt to write the page
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Kernel Memory Protection (cont.)

Examples of code/data to monitor or protect:
• Kernel code and page tables entries for such mappings
• Syscall table
• IDT (Interrupt Descriptor Table)
• …
• Various data structures, e.g. kernel data declared as “const ...”



10

Protecting CPU State 
Control
Linux kernel does not change the setting for 
CPU control at runtime:
• Control Registers

• CR0 – PG, CD, WP, PE, 
• CR4 – UMIP, VMXE, SMXE, SMEP, SMAP, 

PKE, 
• MSRs

• EFER
• PAT
• MISC_ENBLE
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Security Feature Extensions to CPUs

• Implement new or future H/W security features in virtualization so that the current or 
older CPUs can take advantage of them

• Example: UMIP (User-Mode Instruction Prevention) – can be mostly emulated by the exiting H/W 
virtualization feature

• Para-virtualization
• Requires modifications to the kernel
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Protecting IOMMU State Control

Setup once and never modified:
• Root Table Address
• Invalidation Queue Address
• Interrupt Remapping Table Address

Feature Enabling:
• DMA Translation
• Interrupt Remapping
• Queued Invalidation
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Policy and Incident Handling

Monitor and protect specific kernel data/code and system resources (assets):

• <Which asset to monitor> := Bits of a control register, MSRs, memory pages, or I/O 
ports, 

• <Permission> := RO (Read-Only), XO (Execution Only), NA (No Access Allowed)
• <Action(s)> := Omit the attempt and log, Allow the attempt and log, 

<Which asset to monitor>, <Permission>, <Action upon Permission Violation>
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Architecture Overview (KVM Guests Only)

Extend KVM:
• Kernel Monitoring/Protection
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Architecture Overview (Host and KVM Guests)

Extend KVM:
• Kernel Monitoring/Protection

Thin Hypervisor for bare metal:
• Integrated into KVM
• Does not require QEMU
• Activated/deactivated at 

runtime from user-level
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Bare-Metal Linux in Virtualization Non-Root Mode

Bare-metal Linux can run like the native with Virtualization Non-Root Mode enabled:
• Pass-through

• I/O devices, interrupt controllers, timers, power management, – No VM exits (Done by “VM Exit 
Control”)

• Identity mapping (+ protection):
• EPT (Extended page tables) – EPT(GPA) == HPA
• Use the bare metal kernel – No additional memory for virtualization (except EPT)

• Platform protection
• Prevent access to platform resources – Platform-specific MSRs, ports, I/O spaces
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Switching from Virt. Non-Root to KVM (Virt. Root)

Go back to Virtualization Root 
Mode to run guests on top of 
KVM:
• Avoid nested virtualization

Current Implementation:
1. VM Exit in the kernel (e.g

VMXOFF instruction)
2. VM Exit handler for the bare-

metal kernel
3. IRET to the next instruction 

that caused the VM exit (one 
after VMXOFF) 
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Prototype Implementation of “Non-Root Mode Bare-
Metal Linux” 
• Add new IOCTLs to KVM

• De-privilege and privilege the current CPU 
(switch_and_exit)

• Start running in Virtualization Non-Root Mode from the 
next instruction in the KVM module

• Generate a dedicated VM exit to go back to 
Virtualization Root Mode

• Separate VM exit handler
• Monitoring and protection
• EPT is constructed in advance or at runtime (optional)

• Code changes are well contained in KVM module

VMCS.GUEST_RIP

switch_and_exit

User Process

Construct VMCS

VM Entry point 
(De-privileged)

KVM module

/dev/kvm
De-privileging Case
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Comparison of Overhead
Using lmbench (micro benchmark) and kernel build

• Kernel build
• 1.2 % overhead with bare-metal kernel in 

Virtualization Non-Root Mode

• lmbench

microsecond

*KVM guest - qemu-system-x86_64 -enable-kvm -cpu host -
smp 4 -m 4096 -hda image_file -serial stdio

lat_sys_call -P 1 -W 1000000 -N 1000 null
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0.2
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0.6
0.8

1
1.2
1.4
1.6
1.8

null read write stat fstat open

lmbench3 Results

Bare Metal Non-Root Bare Metal KVM Guest
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Beyond Kernel Protection

Debugging:
• Monitor specific behaviors or events for debugging

More operations are available in virtualization (Virtualization Non-Root Mode):
• PML (Page Modification Logging)

• Can be used to monitor memory activities, which guest physical memory pages are modified frequently
• #VE (Virtualization Exception)

• Additional exception regarding GPA to HPA translation (access to non-present guest physical memory)

Hot patching and Intercepting exceptions (examples):

• Intercept #DE in the kernel (oftentimes used as DoS) – Patching in the KVM module without modifying the 
kernel code
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Current Status and Next Step

Current Status:
• PoC has been done (< 1000 lines of code changes to KVM module only)
• Adding policies and actions
• Planning to share the patches and findings with the community
• Feedbacks are welcome

Next Step:
• Reflect feedback to the design and patches
• Send out RFC
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• Monitor and protect the system resources and critical kernel data/code

• Extend the CPU features so that the kernel can harden itself

• Implement the above with no or minimal modifications to the core kernel

• Make it available both to VMs and bare-metal Linux 

System resources (examples):

• CPU control (determined by the control registers, MSRs, )

• IOMMU

• Platform resources (e.g. system PCIe devices such as memory controllers, BIOS, )
23

Goals of Kernel Protection


