
“It is wrong to suppose that if
you can’t measure it, you can’t

manage it - a costly myth”

W. Edwards Deeming

“If you can’t measure it, you
can’t improve it”

Lord Kelvin

Technical Debt for
Linux-based distributions:
Estimating what you are missing

Jesus M. Gonzalez-Barahona (URJC & Bitergia)
Paul Sherwood (Codethink)
speakerdeck.com/bitergia

Linux Foundation Open Source Leadership Summit
Tahoe, CA (USA)
February 14th 2017

https://speakerdeck.com/bitergia
https://speakerdeck.com/bitergia

Outline
Some context

Why debt for distros

Approach

Current results

Next steps

Some context

/Jesus

Like five years ago I
was having coffees
with the gang of
Bitergia founders

Involved in the
company since then

bitergia.com

I work at
Universidad Rey
Juan Carlos...

...researching about
software
development

gsyc.es/~jgb

My two hats:

http://bitergia.com
http://bitergia.com
http://gsyc.es/~jgb
http://gsyc.es/~jgb

/Paul
Currently…

Codethink CEO
and shareholder

Consultant +
troubleshooter

Baserock contributor

Previously...

Teleca Founder

cmdline tools + VCS

Project Manager

“The Software
Commandments”

Why debt for
distros

Context

(Paul’s POV)

● Develop/integrate/test software
● Employ/fund others to do that too
● Offer teams to large customers

● Advise on business impacts of FOSS
● Recommend *using* FOSS
● See lots of projects *misusing* FOSS

○ EOL versions

○ Long local forks, not upstreamed

● Notice Year 1 practices hurt Year 2..Year 20
● Wonder why… maybe because

○ Year 1 metrics are obvious (developer costs vs delivery date)

○ Later metrics are a mystery...

Unanswered:
when should
we update?

Unanswered:
when should
we update?

We’re not talking
about updating
just a few
components...

Typical IVI project
approaching 1000…

Which ones do we
need to upgrade?

How often do we
need to re-decide?

Example ● Project started on 3.8.x kernel in 2012
○ Plus custom drivers

● Went live three years later on same 3.8.x
○ Plus custom functionality
○ Plus thousands of fixes backported

● As the years go by
○ Developers move on - no-one understands the

custom stuff
○ Cost of backporting increases

● New variants need new features (eg virtualization)
○ Cost of backporting from later kernels increases

Eventually one of the releases DEMANDS an update

Example continued

Development

Maintenance

When to
update

What you risk by
upgrading

What you risk or lose
by not upgrading

When to
update

The balance may change suddenly
over time

Rationale ● Technical debt is a popular concept
● … but not for third-party software
● … and not for FOSS

● Distros are large third-party software sets
● Distros update constantly
● Distro users often do not

● Cost of updating is perceived high
● Cost of not updating is unknown

Can we even **find** metrics for this?

Approach
What to measure?

- Delta vs mainline
- For individual components,

and
- For whole stack:

- distros
- custom

assemblies/stacks

Defining
“Gold
standard”

The different
kinds of gold
(examples)

Goals Scenarios Candidates

Stability Isolated system,
frozen
functionality

Debian
stable

Functionality Cloud
application

Latest
upstream

Security Upgradable
embedded

Stable
upstream

Comparing
with
upstream

Upstream master

Upstream 2.x

Deployed packages

Distro
packages

1.4 2.0 2.1

Comparing
with
upstream
(no updates)

Upstream master

Upstream 2.x

Deployed packages

Distro
packages

1.4 2.0 2.1

Comparing
with
upstream
(late updates)

Upstream master

Upstream 2.x

Deployed packages

Distro
packages

1.4 2.0 2.1

Comparing
with
upstream
(new
package)

Upstream master

Upstream 2.x

Deployed packages

Distro
packages

1.4 2.0 2.1 3.0

??

Compare
“most likely
upstream
equivalent”

1.4 2.0 2.1 3.0

??

Compare
“most likely
upstream
equivalent”
with HEAD 1.4 2.0 2.1 3.0

??

Difference is
“technical lag”
with
“gold standard”

1.4 2.0 2.1 3.0

??

How to
measure
difference 1.4 2.0 2.1 3.0

Lines of code
Number of functions, classes
Number of bugs fixed
Number of security bugs fixed
Number of issues closed
Time for benchmark runs
Unit test coverage
Results in integration tests
...

Current results

Debian Git
releases,
lag in November
(lines, files)

Debian Git
releases,
lag in Nov.
(commits)

Normalized
effort
(in days)

For each developer:
number of days with at least

one commit

For a project:
sum for all developers

Debian Git
releases,
lag in Nov.
(normalized
effort)

Next steps

Application
to many
domains

Debian packages in a virtual machine

Python pip packages in a deployed
container

JavaScript npm modules in a web app

Yocto packages in an embedded
system

Definition of
details,
according to
requirements

Different “golden standards”

Different metrics for lag

Different aggregations

Software for automated
computation of lag per component

(and dependencies?)

Credits

Images “Gold”, by Michael Mandiberg
CC Attribution-ShareAlike 2.0
https://flic.kr/p/6feTT2

“Gold philarmonic”, by Eric Golub
CC Attribution-ShareAlike 2.0
https://flic.kr/p/7csHXG

“Plymouth”, by Dennis Jarvis
CC Attribution-ShareAlike 2.0
https://flic.kr/p/5pqT72

“Jenga distorted”, by Guma89 at
WikiMedia Commons

CC Attribution-ShareAlike 3.0

https://commons.wikimedia.org/wi
ki/File:Jenga_distorted.jpg

“Balance scale”, by winnifredxoxo
at Flickr
CC Attribution-ShareAlike 2.0
https://flic.kr/p/9LdVCR

https://flic.kr/p/6feTT2
https://flic.kr/p/6feTT2
https://flic.kr/p/7csHXG
https://flic.kr/p/7csHXG
https://flic.kr/p/5pqT72
https://flic.kr/p/5pqT72
https://commons.wikimedia.org/wiki/File:Jenga_distorted.jpg
https://commons.wikimedia.org/wiki/File:Jenga_distorted.jpg
https://commons.wikimedia.org/wiki/File:Jenga_distorted.jpg
https://flic.kr/p/9LdVCR
https://flic.kr/p/9LdVCR

