android

SELinux in Android Oreo or:
How | Learned to Stop Worrying and Love Attributes

Dan Cashman
September 15th, 2017

",i,,,, J“l% N
__I

Mot

S whoami

e Dan Cashman - dcashman@gooqgle.com

e Android Security since 2013

e Software Engineer

mailto:dcashman@google.com

Acknowledgements

Alex Klyubin

Jeff Vander Stoep
Jim Carter

Nick Kralevich
Sandeep Patil
Stephen Smalley

Background: A(n) History
of SELinux on Android

Prehistory: SELinux added to Linux as an LSM
Jelly Bean (4.3): SEAndroid upstreamed to

AOSP and released in permissive mode The Case for Secu rity
° r}:'::: (4.4): Four critical daemons in enforcing Enhanced (SE) Android
Lollipop (5.0): Enforcing EVERYWHERE.
Marshmallow (6.0): extended perms, multi-user, Stephen Smalley
svemgr object manager, hardening Trusted Systems Research
e Nougat (7.0): hardening + verified boot National Security Agency
protection

e Oreo (8.0): Treble

android

Introducing Treble

Project Treble is a re-architecture of the Android
software to make the stack more modular and
facilitate faster platform upgrades and security
updates.

Android Apps

Developer API

Android OS
framework

VTS

Vendor interface

Vendor
implementation

100%
Android version
Sl
nls Cupcake
Tl Donut
220 Eclair
m201 Eclair
B2l Eclair
w22 Froyo
B23232 Gingerread
B233237 Gingerread
30 Honeycomb

0% gay Honeycomb

32 Honeycomb

Ice Cream
B40402 Sandwich

Ice Cream
403404 2o hvich

m4l Jelly Bean
LY Jelly Bean
B3 Jelly Bean
20% - - i f Bk Y Kikat
N5l Lollipop
msl Lollipop
na0 Marshmallow
B7071 Nougat

0% : : . _ -'

Yy Ny P22l YNy Yy Yy, 96 959 9 9 9 P S 6 9D
P PP P P L S U L PR P PR P P PP PP PP P

FEIS IS FOE SIS PRSI S FELSILF OIS ILIEL SIS FE S v‘“oﬁo"}'t&v“ ¥

Qualcomm M -l MSM8992 M -| device AIM
AOSP M
Mediatek M MSM8952 M device B/M
SLSIM
SoC... M device C/M
.M
Qualcomm L
AOSP L
Mediatek L
AOSP K
SLSIL
AOSP ...
L

Before Treble

Previous Updated
Android Release Android Release

Previous Android Updated Android
OS framework 0S framework

Previous vendor Reworked vendor
implementation implementation

With Treble

Previous Android Updated Android

0S framework 0S framework

Vendor interface

Original vendor implementation

Treble Key Players

VINTF - the vendor interface

HIDL - HAL Interface Definition Language
VTS - Vendor Interface Test Suite

VNDK - Vendor Native Development Kit (a la
NDK for apps)

Separate Ownership

android

ODM

OEM

Platform
Vendor

bootloader

boot

vendor

odm

radio

oem

system

SoC

SEAnNndroid vs Treble

As Android’s mandatory access
control (MAC) system, SELinux
policy should be all-powerful
and control every component of
the system.

Treble seeks to create a
modular Android where
different owners may update
their components
independently of others.

Approaches Mooted

e Policy hierarchy: odm > vendor > system or LRU (least-recently-updated)
o Pro: simple implementation
o Con: Prevents independent update
e Switch from monolithic kernel policy to base policy + modules
o Pro: modules in the name, so modular?
o Cons: language limitations, libsemanage deps, policy rewriting
e Cloud-compilation
o Pro: simple on-device implementation
o Con: additional update server infrastructure
e On-device compilation (winner!)
o Pro: each component owner can provide policy alongside code that
needs it
o Con: new work needed at early-boot

On-device Compilation

e Split policy into two components: plat and non_plat (framework and
device-specific)
e Added first stage mount of /system and /vendor partitions (all plat on
/system and all nonplat on /vendor)
e Added secilc executable and call from init to build policy binary from split
components
e Modified configuration file consumers to reflect split
o libselinux - file_contexts (forked from upstream)
o PackageManager - mac_permissions.xml
o libselinux android.c - property_contexts, seapp_contexts,
service_contexts (and hwservice_contexts)
e Defined object ownership according to split

Global vs. Device-specific Policy

Policy Size (LOC)

sailfish device
13.2%

core policy
86.8%

Device-Specific Type Usage
Sailfish types

public
21.1%

device-specific
78.9%

Public/Private?

e The public/private split is the SELinux extension to the treble VINTF. Public
policy can be relied on by vendor policy.
e Public policy
o Is basically what the global policy was pre-Oreo
o types and attributes can be used directly in vendor policy
o types are versioned (more later)
o avrules are copied to the device policy
e Private policy
o Describes internal Android framework components
o Does not interface with vendor components
o Could disappear at any point

Problem: Labels Change Across Releases

O) ¢

MediaServer
ExtractorService
MediaCodecService

AudioServer
CameraServer
MediaDrmServer

Problem: Labels Change Across Releases

O)

/dev/cam

/proc/meminfo

Problem: Labels Change Across Releases

e Vendor policy is written based on Framework policy
e Framework can be changed with a framework-only update (treble goal)
e Framework policy owner has no knowledge of vendor policy

Solution: Attributes

Every object has a security context 'h
e uruntrusted app:s0:c512,c768 “ ’}a!trl “Ies

u - user
r- role
untrusted app - domain/type <
s0:¢512,c768 - mls ifheg

Only one type per object, but multiple types per '!3 : ‘-_

attribute.

atiributes gverywhere

Solution: Rewrite vendor policy in terms of
attributes. Framework policy needs to map the
object types in the new version to their attribute
representation from an old version.

android

Policy in Oreo

-

O public

N

O private

AN

O public
(versioned)

e

O vendor

AN

Policy with Framework Update

4 N 4 N

P public O public
(versioned)

N
AN
Y
N

P private O vendor

CIL Benefits

typeattributeset() can contain attributes
Ordering doesn’t matter

Easier to manipulate

Designed as basis for higher-level languages

- system/sepolicy/security_classes
device/$SoC/common/sepolicy/security_classes
device/$S0C/$DEVICE/sepolicy/security_classes

initial_sids SELinux Compiler -
external/selinux

policy.conf

l

LY 1]
- system/sepolicy/adbd te
_ device/$SoC/common/sepolicy/adbd te
genfs_contexts device/$SoC/3DEVICE/sepolicy/adbd.te

system/sepolicy/app.te

port_contexts
aee

Example: Adding a new type

type sysfs A; -> (type sysfs A) (in CIL)

type sysfs; (type sysfs) (in CIL)

allow .. sysfs: ..; (allow .. sysfs ..) (in CIL)
allow .. sysfs A: ..; (allow .. sysfs A ..) (in CIL)

(typeattributeset sysfs vl

(sysfs sysfs A))

v1 nonplat/vendor policy

New v2 plat/framework policy w/sysfs A
as a new sysfs type.

Mapping file linking to v1

(allow ...

sysfs vl

(typeattribute sysfs vl)
)

Shut the HAL Up

Process

Permissions (for all HALs)

Capabilities Security boundary
HAL 1 HAL 2
Driver 1 Driver 2 |- Driver N
Security boundary

Kernel

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

Permissions
Capabilities

Driver 1

Process

Security boundary

Security boundary

Driver2 S Driver N
Security boundary
Kernel

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

HAL policy

e HALs are the main architectural change in Treble
e Multiple HALs could be in same process
e HAL clients can change after update
o E.g. mediaserver split
e HIDL, the lingua franca of Treble, required over /dev/hwbinder
e Solution: attributes again

Attributes!

36 new HAL policy files
108 (36 x 3) attributes from HALs alone
Used to

o Create stable interface

o Migrate to Treble using same code base
Performance hit required CIL change (thanks
Jim Carter!)

android

Large Re-architecture Projects are Hard

Android Apps

e SELinux can help! '
e New attributes created to catch bugs and guide development Doveloper AP T """ ""*
o binder_in_vendor_violators
o socket_between_core_and_vendor_violators
. Android OS
o vendor_executes_system_violators framework
o coredomain, vendor_file_type
e 74 bugs found and fixed violating new architecture :

Vendor interface

Vendor
implementation

The Future (Why I'm Here)

e Upstream necessary changes

e SELinux tools now performance-critical!

e ‘“If all you have is a hammer, everything looks like an attribute” - explore
alternatives with other stakeholders

e Clean up existing policy

QUESTIONS ?

=/ &
¥ |" 'z
<JL’E Il BT

a“m

