
SELinux in Android Oreo or:
How I Learned to Stop Worrying and Love Attributes

Dan Cashman
September 15th, 2017

$ whoami

● Dan Cashman - dcashman@google.com

● Android Security since 2013

● Software Engineer

mailto:dcashman@google.com

Acknowledgements

● Alex Klyubin
● Jeff Vander Stoep
● Jim Carter
● Nick Kralevich
● Sandeep Patil
● Stephen Smalley

Background: A(n) History
of SELinux on Android

● Prehistory: SELinux added to Linux as an LSM
● Jelly Bean (4.3): SEAndroid upstreamed to

AOSP and released in permissive mode
● KitKat (4.4): Four critical daemons in enforcing

mode
● Lollipop (5.0): Enforcing EVERYWHERE.
● Marshmallow (6.0): extended perms, multi-user,

svcmgr object manager, hardening
● Nougat (7.0): hardening + verified boot

protection
● Oreo (8.0): Treble

 Introducing Treble

Project Treble is a re-architecture of the Android
software to make the stack more modular and
facilitate faster platform upgrades and security

updates.

AOSP M

AOSP L

AOSP ...

Qualcomm M

Mediatek M

SLSI M

… M

Qualcomm L

Mediatek L

SLSI L

… L

AOSP K

MSM8992 M

MSM8952 M

SoC... M

device A/M

device B/M

device C/M

Treble Key Players

● VINTF - the vendor interface
● HIDL - HAL Interface Definition Language
● VTS - Vendor Interface Test Suite
● VNDK - Vendor Native Development Kit (a la

NDK for apps)
● Separate Ownership

bootloader

vendor

boot

odm

system

radio

oem

ODM

OEM

Platform
Vendor

SoC

SEAndroid vs Treble

● As Android’s mandatory access
control (MAC) system, SELinux
policy should be all-powerful
and control every component of
the system.

● Treble seeks to create a
modular Android where
different owners may update
their components
independently of others.

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Changes for Treble
On-device policy compilation

New public/private split (policy API)

Compatibility attributes and mapping files

HAL policy

Neverallow-driven development

Questions?

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Policy Compilation

Approaches Mooted

● Policy hierarchy: odm > vendor > system or LRU (least-recently-updated)
○ Pro: simple implementation
○ Con: Prevents independent update

● Switch from monolithic kernel policy to base policy + modules
○ Pro: modules in the name, so modular?
○ Cons: language limitations, libsemanage deps, policy rewriting

● Cloud-compilation
○ Pro: simple on-device implementation
○ Con: additional update server infrastructure

● On-device compilation (winner!)
○ Pro: each component owner can provide policy alongside code that

needs it
○ Con: new work needed at early-boot

On-device Compilation

● Split policy into two components: plat and non_plat (framework and
device-specific)

● Added first stage mount of /system and /vendor partitions (all plat on
/system and all nonplat on /vendor)

● Added secilc executable and call from init to build policy binary from split
components

● Modified configuration file consumers to reflect split
○ libselinux - file_contexts (forked from upstream)
○ PackageManager - mac_permissions.xml
○ libselinux android.c - property_contexts, seapp_contexts,

service_contexts (and hwservice_contexts)
● Defined object ownership according to split

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

public/private policy split

Global vs. Device-specific Policy

Device-Specific Type Usage

Public/Private?

● The public/private split is the SELinux extension to the treble VINTF. Public
policy can be relied on by vendor policy.

● Public policy
○ Is basically what the global policy was pre-Oreo
○ types and attributes can be used directly in vendor policy
○ types are versioned (more later)
○ avrules are copied to the device policy

● Private policy
○ Describes internal Android framework components
○ Does not interface with vendor components
○ Could disappear at any point

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Compatibility Attributes

Problem: Labels Change Across Releases

MediaServer

 MediaServer
 ExtractorService

 AudioServer
 CameraServer
 MediaDrmServer

 MediaCodecService

Problem: Labels Change Across Releases

camera_device video_device

proc proc_meminfo

/proc/meminfo

/dev/cam

Problem: Labels Change Across Releases

● Vendor policy is written based on Framework policy
● Framework can be changed with a framework-only update (treble goal)
● Framework policy owner has no knowledge of vendor policy

Solution: Attributes

Every object has a security context
● u:r:untrusted_app:s0:c512,c768

● u - user
● r - role
● untrusted_app - domain/type
● s0:c512,c768 - mls

Only one type per object, but multiple types per
attribute.

Solution: Rewrite vendor policy in terms of
attributes. Framework policy needs to map the
object types in the new version to their attribute
representation from an old version.

Policy in Oreo

O public O public
(versioned)

O private O vendor

Policy with Framework Update

P public O public
(versioned)

P private O vendor

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

SELinux Common Intermediate
Language (CIL)

CIL Benefits

● typeattributeset() can contain attributes
● Ordering doesn’t matter
● Easier to manipulate
● Designed as basis for higher-level languages

Example: Adding a new type

type sysfs_A; -> (type sysfs_A) (in CIL)
type sysfs; (type sysfs) (in CIL)
allow … sysfs: …; (allow … sysfs …) (in CIL)
allow … sysfs_A: …; (allow … sysfs_A …) (in CIL)

(typeattributeset sysfs_v1 (sysfs sysfs_A))

(typeattribute sysfs_v1)
(allow … sysfs_v1 …)

New v2 plat/framework policy w/sysfs_A
as a new sysfs type.

Mapping file linking to v1

v1 nonplat/vendor policy

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

HAL policy

Shut the HAL Up

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

https://android-developers.googleblog.com/2017/07/shut-hal-up.html

HAL policy

● HALs are the main architectural change in Treble
● Multiple HALs could be in same process
● HAL clients can change after update

○ E.g. mediaserver split
● HIDL, the lingua franca of Treble, required over /dev/hwbinder
● Solution: attributes again

Attributes!
attribute hal_allocator;
expandattribute hal_allocator true;
attribute hal_allocator_client;
expandattribute hal_allocator_client true;
attribute hal_allocator_server;
expandattribute hal_allocator_server false;

…

attribute hal_wifi_supplicant;
expandattribute hal_wifi_supplicant true;
attribute hal_wifi_supplicant_client;
expandattribute hal_wifi_supplicant_client true;
attribute hal_wifi_supplicant_server;
expandattribute hal_wifi_supplicant_server false;

● 36 new HAL policy files
● 108 (36 x 3) attributes from HALs alone
● Used to

○ Create stable interface
○ Migrate to Treble using same code base

● Performance hit required CIL change (thanks
Jim Carter!)

Proprietary + ConfidentialProprietary + Confidential

Proprietary + Confidential

Neverallow-driven-development

Large Re-architecture Projects are Hard

● SELinux can help!
● New attributes created to catch bugs and guide development

○ binder_in_vendor_violators
○ socket_between_core_and_vendor_violators
○ vendor_executes_system_violators
○ coredomain, vendor_file_type

● 74 bugs found and fixed violating new architecture

The Future (Why I’m Here)

● Upstream necessary changes
● SELinux tools now performance-critical!
● “If all you have is a hammer, everything looks like an attribute” - explore

alternatives with other stakeholders
● Clean up existing policy

QUESTIONS ?

