
mentor.com/embedded
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Gianpaolo Macario

Mentor Embedded – Linux Services

GENIVI – EG-SI Architect

Automotive Linux Summit Fall
Edinburgh, UK – October 2013

LXCBENCH
Understanding the capabilities of

Linux Containers in IVI
applications through

benchmarking

Agenda

� The problem statement

� LXC: The technology

� How LXC may address some IVI use cases

� The GENIVI LXCBENCH Incubation Project

� Summary

Who am I?

Gianpaolo Macario

Architect, Mentor Graphics – ESD – Linux Services

System Architect, GENIVI Alliance

Past System Architect, Magneti Marelli – Infotainment & Telematics

Experiences: IT Manager, COMAU – Robotics Business Unit

Software Consultant, GlobalValue (a Fiat/IBM Italy JV)

…

Linux and Open Source user and developer since 1993 (linux-0.99pl13)

Very proud of my first contribution to Linux Kernel early in 1995 (linux-1.3.13)

My social life: http://it.linkedin.com/in/gmacario/

https://twitter.com/gpmacario

Embedded Industry Trends

Hardware Consolidation

– SoC

– Subsystems

– Systems

Benefits

– Reducing BOM and power consumption

– Increasing performance and capacity of the system

Concerns

– Complexity of the system design, development, debugging

Example 1: Consolidation GENIVI/AUTOSAR

� Most IVI systems have traditionally split the system
architecture on separate CPUs/MCUs:

� Infotainment domain: GENIVI Linux software stack, graphical
resources, etc

� Automotive domain: RTOS and AUTOSAR stack for access to
vehicle network, ECU lifecyle, etc

� New SoC are coming to market which integrate CPU
cores (i.e. Cortex A9/A15, M3/M4) and on-board
peripherals optimized for the two domains

� How can the software architecture be deployed on such
complex SoCs?

Example 2: Linux Main Head Unit + Android RSE

� In this scenario the functions of two units are being
consolidated:

� Main Head Unit (navigation, radio broadcast, etc.) controlled by
the driver and running ���� GENIVI Linux

� Rear-Seat Entertainment (Internet browsing, downloadable
apps, games) for rear passengers ���� Android

� To realize such configuration the resources provided of
one complex SoC (i.e. CPU cores, video ports, USB
ports, etc) have to be allocated to the two domains to
make sure the RSE functions are isolated and will not
impact the performances of the main HU

Approach to IVI domains consolidation

� Establish a reduced set of interfaces between
the domains

� Provide control over resource utilization

� Ease deployment and integration of function
domains on the same ECU

What are Linux Containers?

Linux Containers represent one of several techniques to realize system consolidation
by providing a lightweight virtual system mechanism for Linux able to implement

• Resource management

• Process management

• File System Isolation

Each container provides a reduced view of the same kernel that has created the
container itself. As a result, multiple containers may run on the same hardware and
can share resources through the single Linux kernel that created them.

Linux Containers rely on a few features available in the Linux kernel since 2.6.x:

• cgroups

• namespaces

Additionally, the LXC user-space tools provide an abstraction to allow programs to:
create containers, start/stop containers, etc.

What are NOT Linux Containers?

Linux Containers follow an opposite approach if compared to many other virtualization
tools (most notably, hypervisors). In fact, rather than starting from an emulated
hardware (completely isolated) and then trying to reduce overhead and improve
performances, LXC use already efficient mechanisms and build up isolation.

Think about LXC as “chroot on steroids”

Containers can be used as an alternative to OS-level virtualization to run multiple
isolated systems on a single host, and can provide different degrees of isolation.

For what security is concerned, Linux Containers leverage existing security
mechanisms available in Linux:

• LXC rely on Discretionary Access Control (provided by the Linux kernel)

• Can leverage Mandatory Access Control (such as SE Linux and smack) if available

Hypervisors and Linux Containers: comparing features

Feature Type-1 Hypervisor Linux Containers Notes

Guest VM Each guest runs inside a dedicated
(virtual) hardware – and therefore is not
limited to a Linux-based system

All guests share the same Linux kernel of
the host – so only Linux-based OS are
supported

Consolidation of mixed OS
(i.e. AUTOSAR+Linux) cannot be
realized with LXC

Guest Kernel Each guest kernel is loaded into its own
memory region

Only one Linux kernel image is loaded into
physical memory

Adaptations needed to
guest OS kernel

Guest OS kernel needs to be made HV-
aware

No – The Linux kernel device drivers
validated on the Bare Metal Hardware are
enough

Effort to make each guest OS HV-
aware depends on how actual
devices are allocated to guest OS

SoC dependencies To minimize performance overhead over
Bare Metal some Hypervisors take
advantage of specific HV-oriented
features available in most recent SoCs

No – kernel support for LXC is
independent and neutral to hardware
architecture/SoC

Communication between
guests

Through virtual (i.e. Ethernet or Serial
Adapters) hardware devices realized by
the Hypervisor

All standard Linux IPC mechanisms
(sockets, pipes, signals message queues,
etc) may be used

Communication between guests is
achieved through fewer SW layers
on LXC

Sharing
libraries/filesystems
between guests, or
between guest and host

Not possible Through LXC config options guests may
transparently mount subdirectories of the
host

This extra flexibility of LXC allows
optimization of system
storage/RAM usage but adds
constraints when updating guests

Security mechanisms Built into each HV, details vary between
implementations

Although LXC adds no security to Linux,
other technologies such as Mandatory
Access Control may be leveraged

A thorough system security
analysis should drive design
choices here

Software License Depends on HV vendor Kernel Features: GPLv2
Userspace: LGPL-2.1

11

Embedded Domain Separation Options

Safety Systems

Airbags, ABS, stability, etc

Powertrain

ECU,HEV/EV,Air-fuel analyzers

Body Electronics
Keyless, seat memory, etc.

Instrument Cluster ADAS
Parking / Reversing

Telematics
Connected car, Web Services

In-Vehicle Infotainment
Navigation, Multimedia

12

Sample LXC Configuration

Each container is customized by means of a LXC configuration file which specifies

the resources that will made available to the guest OS running inside the container. Example:

Set cgroups CPU affinity to allow exclusive usage of one core by guest OS

lxc.cgroup.cpuset.cpus = 0,1

cpuset.cpu_exclusive = 1

Configure the machine name as seen by guest OS

lxc.utsname = mycontainer1

Define path of Root Filesystem and mount points for the guest OS

lxc.rootfs = /full/path/to/rootfs.mycontainer1

lxc.mount = /full/path/to/fstab.mycontainer1

Deny all access to devices from the guest OS, except /dev/null and /dev/zero

lxc.cgroup.devices.deny = a

lxc.cgroup.devices.allow = c 1:3 rw

lxc.cgroup.devices.allow = c 1:5 rw

NOTE: many more options are available to control guest OS behaviour (see man lxc.conf)

LXCBENCH was the first project
proposed by a non-GENIVI
Member Organization (Politecnico
di Torino) which has been
accepted and launched as an
Open Source Project by the
GENIVI Alliance:

http://projects.genivi.org/lxcbench/

13

LXCBENCH Project Goals

The benchmarking activity aims to measure the performance of an LXC-
equipped system versus a reference system not equipped with virtualization.

For this purpose we selected the Phoronix Test Suite (http://www.phoronix-test-
suite.com), an Open Source automated testing framework.

The following measurement to be executed on a given hardware platform:

Out-of-the-box Linux system (e.g., Ubuntu or similar).
Run PTS to collect a set of measurements to be used as the baseline.

Out-of-the-box Linux system enriched with 1 container, running Linux
(e.g., Ubuntu itself, or Android).
Run PTS in the baseline system only, run PTS in the container, run PTS in
both concurrently.

After collecting the performance measurements in the above scenario,
overheads are evaluated by comparing the performance score of the baseline
system with those of the container-enriched system.

14

LXCBENCH Benchmarking Approach

The goal of the LXCBENCH project is NOT to measure raw
performance of a given hardware platform, rather to
understand the overhead coming from the adoption of
virtualization on different hardware configurations.

For this purpose, we intend to repeat the same
measurements on different hardware platforms, equipped
with both single-core and multi-core (e.g., iMX5, iMX6), and
to quantify the overheads before and after virtualization.

15

The LXCBENCH project is not...

Completed Milestones:

2012-11-12: LXCBENCH Project proposal submitted to GENIVI

2013-02-13: LXCBENCH launched as GENIVI Incubation Project

2013-02-25: First version of benchmarking report
(from OSES 2013 students) released

2013-03-11: Yocto layer meta-lxcbench created

2013-05-17: Phoronix Test Suite recipes integrated into meta-lxcbench

2013-06-30: Added support for more embedded reference boards

2013-09-30: LXCBENCH featured in “Industry and Research Perspectives on
Embedded System Design”

2013-10-25: LXCBENCH presented at ALS Fall 2013

16

LXCBENCH Project Timeline

Test Bench

Motherboard: OMAP4 Pandaboard

Processor: ARMv7 rev 2 @ 1.01GHz (2 Cores)

Memory: 1024MB

Disk: 8GB SU08G

OS: Debian 6.0.7

Kernel: 3.8.0 (armv7l)

Compiler: GCC 4.4.5

Root Filesystem: ext4

Screen Resolution: 1280x720

17

LXCBENCH Preliminary Results (1/3)

Note: relative performance numbers normalized to column “Host (while Guest is idle)”

18

LXCBENCH Preliminary Results (2/3)

Performance PTS Test Host (while
Guest is
idle)

Guest
(while Host
is idle)

Host
concurrently
with Guest

Guest
concurrently
with Host

Stream [MB/s] Copy 1.00 1.00 0.99 0.95

Scale 1.00 1.00 0.99 0.84

Triad 1.00 1.00 0.99 0.77

Add 1.00 1.00 0.99 0.83

Cachebench
[MB/s]

Read 1.00 1.00 0.99 0.99

Write 1.00 1.00 1.00 1.00

Read/
Write/
Modify

1.00 1.00 1.00 1.00

LAME MP3 [s] Encoding 1.00 1.00 1.00 1.00

Containers are very effective in showing low overhead
(host and guest are indeed running on real hardware).

When the same benchmark is running on both the host and
the guest concurrently, a negligible performance hit is
observed (it is expected, as both are looking for the same
memory resource).

Some strange figures ask for further investigations (e.g., the
30% performance hit on Stream/Triad running on the guest).

19

LXCBENCH Preliminary Results (3/3)

Benchmarking is a complex subject:

- Requires an accurate description of the intended use case

- Requires dependable configuration of the test harness

Since there are so many factors which will affect the overall
performance, we want to instrument and benchmark the
basic mechanisms first.

Rather than the focusing on the actual benchmark results –
which will depend on the chosen configuration, we chose
LXCBENCH to deliver tools and mechanisms that may be
reused in different specific product configurations.

20

Basic considerations

In order to:

1) Realize a dependable software configuration

2) Allow configuration according to different use cases

3) Support complete build from sources

4) Reduce complexity and interference from other factors
(not related to the actual PTS benchmark being run)

As part of the LXCBENCH project we have been developing
a simplified, stripped down embedded Linux distribution

– based on the Yocto™ project

– supporting a few embedded HW targets that have been
made available to Politecnico di Torino.

21

LXCBENCH Reusable artifacts

The meta-lxcbench subdirectory of the
LXCBENCH git repository contains a
Yocto 1.3 layer with the recipes and
changes needed to build a reproducible
embedded Linux distribution able to run
the LXCBENCH tests on several target
reference boards.

The meta-lxcbench layer is developed and
tested against Mentor Embedded Linux
(http://www.mentor.com/embedded-
software/linux/) however it should also
work with other Yocto 1.3 based
distributions.
Contributions are welcome!

22

The meta-lxcbench Yocto Layer

Currently supported (MACHINE in local.conf):

imx53qsb Freescale i.MX53 Quick Start Board

pandaboard TI OMAP (PandaBoard)

qemuarm QEMU for ARM (Virtual Hardware)

qemux86 QEMU for x86 (Virtual Hardware)

Support for other physical HW targets is under internal development but not yet
ready for public release:

• Freescale i.MX6 Sabre Auto

• Renesas R-Car H1 (Marzen)

• Wandboard

23

meta-lxcbench: HW Targets

Prerequisite: Sourcery CodeBench and Mentor Embedded Linux 6.0 installed

(other Yocto-1.3 compatible environments may work as well)

cd ~/mel6-lxcbench

Check out the meta-lxcbench layer

git clone git://git.projects.genivi.org/lxcbench.git

Choose the target hardware (example: Freescale i.MX53 QSB)

source meta-mentor/setup-environment -bbuild-imx53qsb imx53qsb

Customize conf/bblayers.conf

cat <<END >>conf/bblayers.conf

BBLAYERS += “/scratch/gmacario/mel6-lxcbench/lxcbench/meta-lxcbench”

END

Customize conf/local.conf

cat <<END >>conf/local.conf

EXTERNAL_TOOLCHAIN ?= “<Sourcery CodeBench ARM GNU/Linux installation directory>”

END

Build it!

bitbake core-image-lxcbench

24

LXCBENCH: Build distro from sources

gmacario@mv-linux-powerhorse:/scratch/gmacario/mel6-lxcbench/build-imx53qsb$ ls -la tmp/deploy/images/

total 91872

drwxrwxr-x 2 gmacario gmacario 4096 Mar 10 15:24 .

drwxrwxr-x 6 gmacario gmacario 4096 Mar 10 15:07 ..

-rw-r--r-- 1 gmacario gmacario 3620 Mar 10 15:09 core-image-lxcbench-imx53qsb-20130310135537.license_manifest

-rw-r--r-- 1 gmacario gmacario 1590 Mar 10 15:09 core-image-lxcbench-imx53qsb-20130310135537.license_manifest.csv

-rw-r--r-- 1 gmacario gmacario 61735936 Mar 10 15:09 core-image-lxcbench-imx53qsb-20130310135537.rootfs.ext3

-rw-r--r-- 1 gmacario gmacario 3400000000 Mar 10 15:09 core-image-lxcbench-imx53qsb-20130310135537.rootfs.sdcard

-rw-r--r-- 1 gmacario gmacario 4921147 Mar 10 15:09 core-image-lxcbench-imx53qsb-20130310135537.rootfs.tar.bz2

lrwxrwxrwx 1 gmacario gmacario 55 Mar 10 15:09 core-image-lxcbench-imx53qsb.ext3 -> core-image-lxcbench-imx53qsb-

20130310135537.rootfs.ext3

lrwxrwxrwx 1 gmacario gmacario 60 Mar 10 15:09 core-image-lxcbench-imx53qsb.license_manifest -> core-image-lxcbench-

imx53qsb-20130310135537.license_manifest

lrwxrwxrwx 1 gmacario gmacario 64 Mar 10 15:09 core-image-lxcbench-imx53qsb.license_manifest.csv -> core-image-

lxcbench-imx53qsb-20130310135537.license_manifest.csv

lrwxrwxrwx 1 gmacario gmacario 57 Mar 10 15:09 core-image-lxcbench-imx53qsb.sdcard -> core-image-lxcbench-imx53qsb-

20130310135537.rootfs.sdcard

lrwxrwxrwx 1 gmacario gmacario 58 Mar 10 15:09 core-image-lxcbench-imx53qsb.tar.bz2 -> core-image-lxcbench-imx53qsb-

20130310135537.rootfs.tar.bz2

-rw-rw-r-- 1 gmacario gmacario 357723 Mar 8 23:33 modules-2.6.35.3-11.09.01+yocto+g012a4b8-r33.16-imx53qsb.tgz

-rw-rw-r-- 1 gmacario gmacario 294 Mar 10 15:08 README_-_DO_NOT_DELETE_FILES_IN_THIS_DIRECTORY.txt

lrwxrwxrwx 1 gmacario gmacario 31 Mar 8 23:24 u-boot.imx -> u-boot-imx53qsb-v2012.07-r1.imx

lrwxrwxrwx 1 gmacario gmacario 31 Mar 8 23:24 u-boot-imx53qsb.imx -> u-boot-imx53qsb-v2012.07-r1.imx

-rwxr-xr-x 1 gmacario gmacario 285788 Mar 8 23:24 u-boot-imx53qsb-v2012.07-r1.imx

lrwxrwxrwx 1 gmacario gmacario 50 Mar 8 23:33 uImage -> uImage-2.6.35.3-r33.16-imx53qsb-20130308222009.bin

-rw-r--r-- 1 gmacario gmacario 3295976 Mar 8 23:33 uImage-2.6.35.3-r33.16-imx53qsb-20130308222009.bin

lrwxrwxrwx 1 gmacario gmacario 50 Mar 8 23:33 uImage-imx53qsb.bin -> uImage-2.6.35.3-r33.16-imx53qsb-

20130308222009.bin

gmacario@mv-linux-powerhorse:/scratch/gmacario/mel6-lxcbench/build-imx53qsb$

25

LXCBENCH distro: Build Results

Example (for MACHINE=“imx53qsb”)

Plug a uSDHC into the host, type "dmesg" to identify the block device

that has been created (in our example: /dev/sdX)

dmesg

SDCARD=/dev/sdX

sudo umount ${SDCARD}?

cat tmp/deploy/images/core-image-lxcbench-imx53qsb.sdcard | sudo dd of=${SDCARD}

That’s it! Then boot the target, login as root and type on the serial console

lxcbench-test01.sh

This script will configure and run the PTS suite.

After a few hours results will be available under ~/.phoronix-test-suite/test-results

26

LXCBENCH distro: Deploy on Target HW

To improve the accuracy of the measurements we collect during benchmarking,
using specific tools

– e.g.: Mentor Embedded System Analyzer along with Phoronix Test Suite benchmarks

To enrich the set of benchmarks we are using

– e.g.: we are looking at specific tests for measuring GPU performance,
and test specifically devised for Android

To extend the analysis by measuring performance overhead on different hardware
architectures:

– i.MX53 done, i.MX6 in progress, Renesas R-Car in progress

– Zynq (Xilinx Dual-Core A9) planned hw already available at PoliTO

– Intel Atom (desired but no hw available so far)

and different OS combinations:

– e.g.: Linux+Linux, Linux+Android, commercial Linux+Linux, commercial Linux+Android

and different kernel configuration

– e.g., using different kernel scheduling policies

By comparing performance overhead vs. Bare Metal with those of other
technologies (mainly hypervisors)

27

LXCBENCH Project Roadmap: short term

To measure robustness (i.e., security) of containers

– we are considering using known root kits and other attacks to "jailbreak"
from one container to another

To compare container robustness with other technologies
(again here we are looking at hypervisors)

Do you have further suggestions, ideas or want to contribute?

Let’s get in touch!

28

LXCBENCH Project Roadmap: medium

mentor.com/embedded
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

Questions?

About the GENIVI LXCBENCH Project

LXCBENCH Project Homepage: http://projects.genivi.org/lxcbench

LXCBENCH Git Repository: http://git.projects.genivi.org/?p=lxcbench.git

Subscribe to Mailing List: genivi-lxcbench@lists.genivi.org

GENIVI project stats at Ohloh: https://www.ohloh.net/orgs/genivi

Related Mentor Embedded Webinars

Implementing Android Based Automotive Infotainment systems:

http://go.mentor.com/2x922

Using Linux in Automotive Systems with Linux Containers:

http://www.mentor.com/embedded-software/events/using-android-in-
automotive-systems-with-linux-containers

30

For further information

mentor.com/embedded
Android is a trademark of Google Inc. Use of this trademark is subject to Google Permissions.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.

End

