Linux - the future for drones

Lucas De Marchi, Intel
ELCE 2015
Who am I

- Software developer
- Contributed to several open source projects throughout the Linux stack
- Recently joined projects under the Dronecode
- Linux maintainer for Ardupilot
Agenda

- Dronecode
- Hardware evolution
- Software evolution
- Handling the complexity and scaling
- Future
Dronecode
“If you want to go quickly go alone,
if you want to go far go together”
Dronecode

- 40+ members
- Composed of several projects, including 2 flight stacks
- Contributions to each of them increasing
Dronecode
Ardupilot

![Graph showing the number of commits from 2009 to 2016. The number of commits increases from 2009 to 2014 and then remains constant from 2014 to 2016.](image-url)
Hardware evolution
Hardware evolution

ArduPilot

APM 1
2010

APM 2
2011

APM 2.5/2.6
2012

Pixhawk
2013

Pixhawk2
2015
Hardware evolution
Ardupilot - Linux Boards

It all started with a single board,
with a specific set of sensors in a daughter board:

BeagleBone Black + PXF cape
Hardware evolution
Ardupilot - Linux Boards

Expansion boards for BeagleBone Black
- PXF 2014
- ErleBoard 2014
- BBBMini 2015

Expansion boards for Raspberry Pi
- Navio/Navio+ 2014
- Raspilot 2015
- ErleBrain2* 2015
- VR Brain 5 LX* 2015

* Not merged yet
Hardware evolution
Ardupilot - Linux Boards

- Bebop
 - Own HW and Linux stack
- MinnowBoard Max*
 - Drone Lure with sensors

* Not merged yet
Overview how a drone works
Hardware/software evolution

101 - How a drone actually works (simplified)
Hardware/software evolution

101 - How a drone actually works (simplified)
Software evolution
Software evolution

Sensors

- From few samples per second to thousands
- Redundancy
- More complex sensors
 - Lidar
 - Optical Flow
 - Depth cameras
 - Computer vision
Software evolution
“Low-level” flight stack

- Increasing accuracy (hence complexity) of control algorithms
 - E.g. the move to EKF for AHRS
Software evolution
Usages - pushing the complexity

- Photography
- Agriculture
- Survey / Mapping
- Inspection
- Deliveries
- Search and rescue
Software evolution

Outcome

- Drones becoming smarter
- Intelligence inside vs outside
- Increased CPU and memory requirements
- Need to scale for more hardware platforms
Handling the complexity and scaling
Handling the complexity and scaling

Boards in Ardupilot

- APM1 and APM2 are deprecated
 - Not enough RAM, flash and CPU anymore
Handling the complexity and scaling

Sensors in Ardupilot

- Support for more sensors, different manufacturers
- Linux boards becoming first class citizens
 - PX4-only features moving to common code
 - Linux-only features starting to appear (existing infrastructure in Linux)
Handling the complexity and scaling
When microcontrollers are not enough anymore

- Companion computer
 - Move complex tasks to a separate Linux board
 - Move flight stack to a separate microcontroller

- Single board Linux solution
 - Both flight stack and other tasks on same board
Handling the complexity and scaling
When microcontrollers are not enough anymore

- **Companion computer**
 - Move complex tasks to a separate Linux board
 - Move flight stack to a separate microcontroller

- **Single board Linux solution**
 - Both flight stack and other tasks on same board

This is the solution taken for the Linux boards currently supported in Ardupilot
Handling the complexity and scaling

Single board Linux solution

- Realtime

- Offload specific part(s) of the stack
 - To separate microcontroller (even inside the SoC)
 - To dedicated off-the-shelf hardware
Handling the complexity and scaling

Single board Linux solution

1. Move single-digit μs precision off the CPU: PWM output, RC decoding (PPM, SBUS, DSMX), tone generator, etc.
2. Follow guidelines for RT tasks in Linux
3. Have the necessary buses exposed
4. Cheers your new Linux-based flight stack
Future
Future
Scaling for new boards

- Support for new boards (LIVE “DEMO”)
- Make adding new boards easier and scalable
 - Runtime detection / configuration
- Different platforms
- Increased complexity
Future

Scaling for new sensors

- Accelerometer
- Gyroscope
- Barometer
- Magnetometer
- GPS
- ...
Future
Scaling for new sensors

Flight stack (Ardupilot)
- Controllers
- PID
- EKF
- Filters
- GPS
- Magnetometer
- Barometer
- Gyroscope
- Accelerometer
Future
Scaling for new sensors

Flight stack (Ardupilot)
- Controllers
- PID
- EKF
- Filters

Sensor drivers

Bus abstraction
- I2C_CHARDEV
- SPIDEV
- TTY

Linux kernel
- GPS
- Magnetometer
- Barometer
- Gyroscope
- Accelerometer

Hardware

Userspace
Future
Scaling for new sensors

Flight stack (Ardupilot)
- Controllers
- PID
- EKF
- Filters
- Sensor HAL
- Sensor drivers

Sensor abstraction
- IIO
- Sensor drivers

Hardware
- GPS
- Magnetometer
- Barometer
- Gyroscope
- Accelerometer

Linux kernel

Userspace
Future

Scaling for new sensors

Use kernel drivers (IIO subsystem)

Pros:
- Several drivers already available
- Share testing with other platforms (Linux desktop, Android)
- Reduce complexity on the flight stack
- Reduce overhead to communicate with sensor: flight stack access data stream

Cons:
- Can't share driver with other platforms (PX4 middleware / Nuttx)
- Harder to prototype new drivers
- Currently used sensors don't have kernel drivers or don't have the right interfaces

Middle ground: support both for separate buses
Future
aka dreams

- Linux boards to foster use of new algorithms
- New sensors
- Smarter autonomous drones
Wrap-up

- Drones growing in application and capabilities
- Linux provides scaling at HW and SW levels
- Sharing parts with other projects improves code quality and testability
Q&A

Links:
Dronecode: http://www.dronecode.org
Ardupilot: http://ardupilot.com/
Contact: lucas.demarchi@intel.com
Slides: conference site
drones-discuss mailing list
http://diydrones.com
Gitter Skype
IRC Mumble