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Introduction
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Static Analysers

● What is Static Analysis?

– Analysis of the soure code without execution

– Usage of algorithms and techniques to find bugs in source code

● What is it not?

– A formal verification of your code

– A proof that your code is bug free

● Why is it useful for us?

– Allows to find many types of defects early in the development process

– Resource leaks, NULL pointer dereferences, memory corruptions, buffer

overflows, etc.

– Supplements things like unit testing,  runtime testing, Valgrind, etc.
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Survey of Available Analysers
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Static Analysers

● Sparse

● Clang Static Analyzer

● CodeChecker based on Clang Static Analyzer

● Klocwork (proprietary)

● Coverity (proprietary, free as in beer service for OSS projects)

● A list with more analysers can be found at [1]

● My personal experience started with

– Clang Static Analyzer

– Klocwork used internally (not allowed to share results)

– finally settled for Coverity Scan service
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Sparse

● Started 2003 by Linus Torvalds

● Semantic parser with a static analysis backend

● Well integrated into the Kernel build

system (make C=1/C=2)

● To integrate it with your project using the build

wrapper might be enough:

make CC=cgcc
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Clang Static Analyzer

● Command line tool scan-build as build wrapper

● Generates a report as static HTML files

● The analyser itself is implemented as C++ library

● Also used from within XCode

● Scan build had many false positives for us and needs 
more manual tuning (e.g. leak detected when added 
to a list or array)

● Turned out to be to noisy without further work for us
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CodeChecker

● Recently (June 2015) published by Ericsson

● Based on Clang Static Analyzer library

● Adds database for defect tracking

● Adds interactive web UI for defect handling

● Incremental reporting against baseline

● Added new checkers to Clang itself as well

● Very interesting but sadly no time to test, yet
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Feature Comparison

Analyser OSS Defect 
database

Web UI False positive 
ratio

Sparse ✔ ✘ ✘ To be tested

Clang Static 
Analyzer ✔ ✘ ✔static html 

output

Noisy

CodeChecker ✔ ✔ ✔ To be tested

Coverity ✘ free as in 
beer service

✔ ✔ Good

Klocwork ✘ ✔ ✔ Good
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Coverity Scan Service
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Coverity Scan Service Overview

● Started 2006 with 50 projects and now runs for

5700

● Many big projects already make use of it: Linux,

Firefox, LibreOffice, FreeBSD, ...

● Scans projects written in C, C++, Java, C# and

JavaScript

● Defect density is defined as defects per 1000

lines of code (1 per 1000 as industry standard)
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Coverity Scan Service Parts

1) Build wrapper cov-build to gather data on

     your system and package it into a tgz file

2) Upload the tgz on the website or via curl

    to web API to trigger analysis

3) Receive a mail once the analysis is completed

4) Web UI for dashboard and to triage defect

    reports
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Coverity Scan Service Dashboard
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Join a Project

● The simplest way to participate is when the project

already uses Coverity Scan

● A good chance as over 5700 projects are registered

already

● A searchable list with participating projects can be

found at [2]

● Request access, which the project admin might need

to approve (depends on project settings)
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Register a New Project

● If your project is not yet using Coverity Scan you need to

register it as a new project at [3]

● Registering is easy (only needs project URL's and license

selection)

● It might take a few days until a newly registered project

is ready to be analysed

● Once the project has been approved you can submit

builds to it
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Scan Service Improvements

● Over my 2 years usage of Coverity Scan there have been

several improvements hardware and software wise

● Hardware upgrades which results in faster analysis

results without long queues

● Improved scanners and heuristics (server side as well as in

new cov-build releases) for less false positives

● Graphs in your project view

● Metrics based on defined components

● CWE Top 25 defects
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Scan Service Project Page
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Hooking it Up in Your Project
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Gather Build Data

● To gather the data needed by the analyser

Coverity provides a build wrapper

● Cov-build needs to be run with your normal build

tools as parameter

● If you project uses make it should be as easy as:

cov-build --dir cov-int make

● It is updated twice a year and recommended to keep 
your version up to date [4]
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Manually Submit Builds

● You can submit builds manually through the

web interface

● Just upload it from the Submit Build form from

your project overview page

● This make sense for your first builds or if you want 
to test something

● In general the process should better be automated
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Submit Builds with Travis CI

● Travis CI build system integrated with GitHub

● Very useful if you use GitHub and/or Travis

● You need to setup your project in Coverity Scan as GitHub

project to have the Travis option available

● Operates on a per-branch basis (default name

coverity_scan)

● Once you push your code to this branch on GitHub Travis

will trigger the Coverity Scan run on it

● A full guideline with .travis.yml template can be found at [5]
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Submit Builds from Jenkins

● There exists a Coverity Plugin for Jenkins [6]

● At the time I tried it, I was not able to use

the free Scan Service as Integrity Manager

instance

● Seems it was only capable of integrating

with a commercial license on your setup
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Submit Builds from Jenkins

● Simply used cov-build and curl to generate and

upload the data to Coverity Scan
FILENAME=efl-$(date -I)-$(git rev-parse --short HEAD)

rm -rf cov-int

./autogen.sh --prefix="${EFL_DESTDIR}" ${config_opts}

cov-build --dir cov-int make -j${PARALLEL_MAKE}

tar czvf $FILENAME.tgz cov-int

curl --form token=XXX --form email=stefan@datenfreihafen.org --form file=@$FILENAME.tgz --for
m version=$FILENAME --form description=$FILENAME https://scan.coverity.com/builds?project=Enli
ghtenment+Foundation+Libraries

make -j${PARALLEL_MAKE} distclean
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Fine Tuning
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Fine Tuning on the Server

● Create project components

– Simple regex patterns to sort files into categories

– Useful for large code bases

– Useful for projects with many maintainers

● You can create a modeling file to adjust

– Helps to tune down the false positive rate

– Upload a file to annotate functions without implementation

for things like abort, free or alloc

– I had no need for it until now
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Fine Tuning in the Code

● Annotations in code

– Better use the modeling file (keeps code clean)

– +kill (always aborts), +alloc (allocates memory), +free (frees argument)

/* coverity[+free : arg-0] */

void local_free(void *to_be_freed) {

…

}

 

● Mention the unique CID's in commit messages for credit

and backreferencing
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Work Flows & Examples
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Work Flow – EFL

● Started to use it in July 2013 with the Enlightenment

Foundation Libraries

● 7 projects from 32k to 750k lines of code

● 3 of them reached a 0 defect rate the rest ranges from 0.02

to 0.18

● Submitted every night from our Jenkins CI setup (one project is to 

big > 500k LOC and thus can only run 4 times a week)

● Mail with scan results is send to a mailing list

● Normally new reports get fixed quickly as they are in areas

which are actively being worked on
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Work Flow – EFL

● During the stabilization phase of our

development cycle I go through the list and

dispatch defects with high impact

● Would love to run new patch submissions

through the scan during review

– To much load towards the scan service

– Incremental checks would be interesting as well
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Work Flow – EFL Example
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Work Flow - Linux

● Huge code base with ~10M lines of code

(after C preprocessor)

● Build submitted once a week by Dave Jones

● Many maintainers and developers accessing

it directly and looking at their components

● Fixes come through the normal dev channels
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Work Flow - Linux

● Defect level is staying around 5000 for a long time now

● Hard to fix obscure areas without domain knowledge or

hardware drivers without hardware

● Much old code
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Work Flow - Alternatives

● Run every commit through it

– Most likely overkill and will not really work well with

the free Scan Service

● Dedicated git branches to be checked

– Only works with git

– The way the Travis CI plugin works

– Maybe interesting for testing review branches
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Striving for 0

● Striving for defect rate of 0

● Gamification

● We have reached this in three of the smaller projects

● Harder to reach in large and old code bases

● Once reached, higher motivation to look at new

defects to maintain the 0 defect rate

● This can obviously only cover problems found by

Coverity Scan. You surely have more. :-)
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Defect Areas

● In my experience the majority of defects are in seldomly

used code paths or new code

● Which explains why they are still there

● An example would be resource leaks on error paths and

during shutdown

● On every 10 or 20 of those defects though there comes

one which makes you really wonder how it could be in

your code at all :-)

● Some stories at [7]
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Examples

● Classic resource leaks

– Not seen to often if you regularly run your code

under Valgrind

● Buffer overruns and memory corruptions

– Good to find those early-on instead of having to go

through a lengthy debug session

● Copy and paste defects which result in logic

flaws
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Summary
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Summary

● Using a static analyser is a good addition to  your QA

toolset

● The setup and usage is easy enough and gives you a

quick and direct benefit

● Finds defects early in the process instead of during

deployment

● Various alternatives to Coverity Scan if they fit you better

● Recommended to run regularly
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Thank you.
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