
1Samsung Open Source Group

Stefan Schmidt
Samsung Open Source Group

stefan@osg.samsung.com

Static Analysis of Your OSS Project
with Coverity

LinuxCon EU 2015

2Samsung Open Source Group

● Introduction

● Survey of Available Analysers

● Coverity Scan Service

● Hooking it Up in Your Project

● Fine Tuning

● Work Flows & Examples

● Summary

Agenda

3Samsung Open Source Group

Introduction

4Samsung Open Source Group

Static Analysers

● What is Static Analysis?

– Analysis of the soure code without execution

– Usage of algorithms and techniques to find bugs in source code

● What is it not?

– A formal verification of your code

– A proof that your code is bug free

● Why is it useful for us?

– Allows to find many types of defects early in the development process

– Resource leaks, NULL pointer dereferences, memory corruptions, buffer

overflows, etc.

– Supplements things like unit testing, runtime testing, Valgrind, etc.

5Samsung Open Source Group

Survey of Available Analysers

6Samsung Open Source Group

Static Analysers

● Sparse

● Clang Static Analyzer

● CodeChecker based on Clang Static Analyzer

● Klocwork (proprietary)

● Coverity (proprietary, free as in beer service for OSS projects)

● A list with more analysers can be found at [1]

● My personal experience started with

– Clang Static Analyzer

– Klocwork used internally (not allowed to share results)

– finally settled for Coverity Scan service

7Samsung Open Source Group

Sparse

● Started 2003 by Linus Torvalds

● Semantic parser with a static analysis backend

● Well integrated into the Kernel build

system (make C=1/C=2)

● To integrate it with your project using the build

wrapper might be enough:

make CC=cgcc

8Samsung Open Source Group

Clang Static Analyzer

● Command line tool scan-build as build wrapper

● Generates a report as static HTML files

● The analyser itself is implemented as C++ library

● Also used from within XCode

● Scan build had many false positives for us and needs
more manual tuning (e.g. leak detected when added
to a list or array)

● Turned out to be to noisy without further work for us

9Samsung Open Source Group

CodeChecker

● Recently (June 2015) published by Ericsson

● Based on Clang Static Analyzer library

● Adds database for defect tracking

● Adds interactive web UI for defect handling

● Incremental reporting against baseline

● Added new checkers to Clang itself as well

● Very interesting but sadly no time to test, yet

10Samsung Open Source Group

Feature Comparison

Analyser OSS Defect
database

Web UI False positive
ratio

Sparse ✔ ✘ ✘ To be tested

Clang Static
Analyzer ✔ ✘ ✔static html

output

Noisy

CodeChecker ✔ ✔ ✔ To be tested

Coverity ✘ free as in
beer service

✔ ✔ Good

Klocwork ✘ ✔ ✔ Good

11Samsung Open Source Group

Coverity Scan Service

12Samsung Open Source Group

Coverity Scan Service Overview

● Started 2006 with 50 projects and now runs for

5700

● Many big projects already make use of it: Linux,

Firefox, LibreOffice, FreeBSD, ...

● Scans projects written in C, C++, Java, C# and

JavaScript

● Defect density is defined as defects per 1000

lines of code (1 per 1000 as industry standard)

13Samsung Open Source Group

Coverity Scan Service Parts

1) Build wrapper cov-build to gather data on

 your system and package it into a tgz file

2) Upload the tgz on the website or via curl

 to web API to trigger analysis

3) Receive a mail once the analysis is completed

4) Web UI for dashboard and to triage defect

 reports

14Samsung Open Source Group

Coverity Scan Service Dashboard

15Samsung Open Source Group

Join a Project

● The simplest way to participate is when the project

already uses Coverity Scan

● A good chance as over 5700 projects are registered

already

● A searchable list with participating projects can be

found at [2]

● Request access, which the project admin might need

to approve (depends on project settings)

16Samsung Open Source Group

Register a New Project

● If your project is not yet using Coverity Scan you need to

register it as a new project at [3]

● Registering is easy (only needs project URL's and license

selection)

● It might take a few days until a newly registered project

is ready to be analysed

● Once the project has been approved you can submit

builds to it

17Samsung Open Source Group

Scan Service Improvements

● Over my 2 years usage of Coverity Scan there have been

several improvements hardware and software wise

● Hardware upgrades which results in faster analysis

results without long queues

● Improved scanners and heuristics (server side as well as in

new cov-build releases) for less false positives

● Graphs in your project view

● Metrics based on defined components

● CWE Top 25 defects

18Samsung Open Source Group

Scan Service Project Page

19Samsung Open Source Group

Hooking it Up in Your Project

20Samsung Open Source Group

Gather Build Data

● To gather the data needed by the analyser

Coverity provides a build wrapper

● Cov-build needs to be run with your normal build

tools as parameter

● If you project uses make it should be as easy as:

cov-build --dir cov-int make

● It is updated twice a year and recommended to keep
your version up to date [4]

21Samsung Open Source Group

Manually Submit Builds

● You can submit builds manually through the

web interface

● Just upload it from the Submit Build form from

your project overview page

● This make sense for your first builds or if you want
to test something

● In general the process should better be automated

22Samsung Open Source Group

Submit Builds with Travis CI

● Travis CI build system integrated with GitHub

● Very useful if you use GitHub and/or Travis

● You need to setup your project in Coverity Scan as GitHub

project to have the Travis option available

● Operates on a per-branch basis (default name

coverity_scan)

● Once you push your code to this branch on GitHub Travis

will trigger the Coverity Scan run on it

● A full guideline with .travis.yml template can be found at [5]

23Samsung Open Source Group

Submit Builds from Jenkins

● There exists a Coverity Plugin for Jenkins [6]

● At the time I tried it, I was not able to use

the free Scan Service as Integrity Manager

instance

● Seems it was only capable of integrating

with a commercial license on your setup

24Samsung Open Source Group

Submit Builds from Jenkins

● Simply used cov-build and curl to generate and

upload the data to Coverity Scan
FILENAME=efl-$(date -I)-$(git rev-parse --short HEAD)

rm -rf cov-int

./autogen.sh --prefix="${EFL_DESTDIR}" ${config_opts}

cov-build --dir cov-int make -j${PARALLEL_MAKE}

tar czvf $FILENAME.tgz cov-int

curl --form token=XXX --form email=stefan@datenfreihafen.org --form file=@$FILENAME.tgz --for
m version=$FILENAME --form description=$FILENAME https://scan.coverity.com/builds?project=Enli
ghtenment+Foundation+Libraries

make -j${PARALLEL_MAKE} distclean

25Samsung Open Source Group

Fine Tuning

26Samsung Open Source Group

Fine Tuning on the Server

● Create project components

– Simple regex patterns to sort files into categories

– Useful for large code bases

– Useful for projects with many maintainers

● You can create a modeling file to adjust

– Helps to tune down the false positive rate

– Upload a file to annotate functions without implementation

for things like abort, free or alloc

– I had no need for it until now

27Samsung Open Source Group

Fine Tuning in the Code

● Annotations in code

– Better use the modeling file (keeps code clean)

– +kill (always aborts), +alloc (allocates memory), +free (frees argument)

/* coverity[+free : arg-0] */

void local_free(void *to_be_freed) {

…

}

● Mention the unique CID's in commit messages for credit

and backreferencing

28Samsung Open Source Group

Work Flows & Examples

29Samsung Open Source Group

Work Flow – EFL

● Started to use it in July 2013 with the Enlightenment

Foundation Libraries

● 7 projects from 32k to 750k lines of code

● 3 of them reached a 0 defect rate the rest ranges from 0.02

to 0.18

● Submitted every night from our Jenkins CI setup (one project is to

big > 500k LOC and thus can only run 4 times a week)

● Mail with scan results is send to a mailing list

● Normally new reports get fixed quickly as they are in areas

which are actively being worked on

30Samsung Open Source Group

Work Flow – EFL

● During the stabilization phase of our

development cycle I go through the list and

dispatch defects with high impact

● Would love to run new patch submissions

through the scan during review

– To much load towards the scan service

– Incremental checks would be interesting as well

31Samsung Open Source Group

Work Flow – EFL Example

32Samsung Open Source Group

Work Flow - Linux

● Huge code base with ~10M lines of code

(after C preprocessor)

● Build submitted once a week by Dave Jones

● Many maintainers and developers accessing

it directly and looking at their components

● Fixes come through the normal dev channels

33Samsung Open Source Group

Work Flow - Linux

● Defect level is staying around 5000 for a long time now

● Hard to fix obscure areas without domain knowledge or

hardware drivers without hardware

● Much old code

34Samsung Open Source Group

Work Flow - Alternatives

● Run every commit through it

– Most likely overkill and will not really work well with

the free Scan Service

● Dedicated git branches to be checked

– Only works with git

– The way the Travis CI plugin works

– Maybe interesting for testing review branches

35Samsung Open Source Group

Striving for 0

● Striving for defect rate of 0

● Gamification

● We have reached this in three of the smaller projects

● Harder to reach in large and old code bases

● Once reached, higher motivation to look at new

defects to maintain the 0 defect rate

● This can obviously only cover problems found by

Coverity Scan. You surely have more. :-)

36Samsung Open Source Group

Defect Areas

● In my experience the majority of defects are in seldomly

used code paths or new code

● Which explains why they are still there

● An example would be resource leaks on error paths and

during shutdown

● On every 10 or 20 of those defects though there comes

one which makes you really wonder how it could be in

your code at all :-)

● Some stories at [7]

37Samsung Open Source Group

Examples

● Classic resource leaks

– Not seen to often if you regularly run your code

under Valgrind

● Buffer overruns and memory corruptions

– Good to find those early-on instead of having to go

through a lengthy debug session

● Copy and paste defects which result in logic

flaws

38Samsung Open Source Group

Summary

39Samsung Open Source Group

Summary

● Using a static analyser is a good addition to your QA

toolset

● The setup and usage is easy enough and gives you a

quick and direct benefit

● Finds defects early in the process instead of during

deployment

● Various alternatives to Coverity Scan if they fit you better

● Recommended to run regularly

40Samsung Open Source Group

References

● [1]: https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis

● Sparse: https://sparse.wiki.kernel.org/index.php/Main_Page

● Clang Static Analyzer: http://clang-analyzer.llvm.org

● CodeChecker: https://github.com/Ericsson/codechecker

● Coverity Scan: https://scan.coverity.com

● [2]: https://scan.coverity.com/projects

● [3]: https://scan.coverity.com/projects/new

● [4]: https://scan.coverity.com/download?tab=cxx

● [5]: https://scan.coverity.com/travis_ci

● [6]: https://wiki.jenkins-ci.org/display/JENKINS/Coverity+Plugin

● [7]: https://scan.coverity.com/o/oss_success_stories

https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
https://sparse.wiki.kernel.org/index.php/Main_Page
http://clang-analyzer.llvm.org/
https://github.com/Ericsson/codechecker
https://scan.coverity.com/
https://scan.coverity.com/projects
https://scan.coverity.com/projects/new
https://scan.coverity.com/download?tab=cxx
https://scan.coverity.com/travis_ci
https://wiki.jenkins-ci.org/display/JENKINS/Coverity+Plugin
https://scan.coverity.com/o/oss_success_stories

41Samsung Open Source Group

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

