
VM-based Containers

Wei Zhang
zhangwei555@huawei.com

Claudio Fontana
claudio.fontana@huawei.com

Who we are

• Wei Zhang – Beijing Huawei R&D office, working in the

Containers team. In this project dealing mainly with the
implementation of the VM-based container design and docker
tooling integration.

• Claudio Fontana – Munich R&D office, working in the OS

and virtualization team. In this project dealing mainly with the
virtualization support to the project.

2

Traditional comparison of Containers vs VMs

Containers Stack VM Stack

INFRASTRUCTURE

HOST OS

DOCKER ENGINE

BIN/LIBS

APP1

INFRASTRUCTURE

HOST OS

HYPERVISOR

BIN/LIBS

APP1

GUEST OS

BIN/LIBS

APP2

GUEST OS

BIN/LIBS

APP2

• Ease of Development/Deployment
• High performance, low overhead
• Huge ecosystem of ready-to-use components

3

Problem: native containers and third
party code

• Running third party code on infrastructure will
introduce security concerns

• Example: Public Cloud, Telecom use cases

Need for strong isolation and security

4

Security features supported by docker
with native containers

• Shrink attack surface:

– Capability: restrict capabilities of process in container

– Seccomp: filter access to syscall, forbid dangerous/unnecessary syscall
inside containers

– SElinux: customize privileges for processes, users and files.

– User namespace: map root user in container to non-root user on host,
limit privileges of users in containers

• Isolation enhancements:

– Fuse: isolate “/proc”, useful for container resource monitoring system.

5

Need for more secure architecture

• Attack surface is still
too large

• A single bug in the
kernel can allow
escape to the host

6

Actual Container use for third party code

This stack again adds overheads and sacrifices
ease of deployment for the sake of security

INFRASTRUCTURE

HOST OPERATING SYSTEM

GUEST OS GUEST OS

DOCKER ENGINE

BINS/LIBS

APP

BINS/LIBS

APP

DOCKER ENGINE

BINS/LIBS

APP

BINS/LIBS

APP

HYPERVISOR

7

What If a VM would…
• Boot almost as fast as native containers

• Consume fewer hardware resources

• Be invisible to the user

 and at the same time…

• run sandboxed containers using the normal docker tools

• be compatible with docker API and prebuilt container images

• interact with all high level tools from the container ecosystem
(K8S, mesos …) without additional modifications

8

What we have created
A container solution based on lightweight VMs

called uVM (microVM) designed to be controlled
by frameworks.

• Integration with docker based on “runV” – OCI

compatible runtime created by Hyper

• Integration with lightweight QEMU VM

9

Guest OS creates a sandbox for
Containers to run in

Page 10

Malicious container

K8S Master

Minion (Secure

Container)
Minion (Native

Container)

Malicious container

Host

C1 C2..
Malicious

container

Host

C1 C2 Malicious

container crash crash

crash

10

Linux Kernel

Hardware (x86-64, ARM64)

Linux Server OS (CentOS, SUSE, Redhat, Ubuntu, …)

KVM

Host Agent (K8S)

Docker Daemon

Dockerhub Images

Nova-compute Agent

(OpenStack)

Hyper Daemon

POD

libvirt

VM Image

virtio-9p virtio-blk

uVM Firmware

uVM Virtualizer

Initrd (hyper-start, …)

Container / POD

uVM Firmware

uVM Virtualizer

Guest OS

Guest RootFS

uVM

for Docker Containers

runV uVM driver

Architecture

11

Secure Container Evolution

• Before docker 1.11.0 (2016-04-13)

Docker daemon Graph driver

Libnetwork

Volumes

Exec driver

Builder

Native(libcontainer)

Runv

LXC

12

Secure Container Evolution

• After containerd/runc introduced

13

Docker daemon

Graph driver

Libnetwork

Volumes

Exec driver

Builder

Libcontainerd

containerd

Runv-containerd

runc

QEMU

Secure Container Evolution

• Next step…

Docker daemon Graph driver

Libnetwork

Volumes

Builder

Libcontainerd containerd runC

runV QEMU

Native
container

Secure
container

14

Next step: use with docker

• Example usage:
– # dockerd --add-runtime “runv” –runtime-args “--

debug” …

– # docker run --runtime “runv” -ti busybox top

• still needs better integration with K8S!

• Docker 1.12+ only

15

Runtime integration Pros and Cons
• Pros:

– Match perfectly docker’s current architecture and roadmap.
– Following OCI standard makes runV easily accepted.

• Cons:
– RunV has to follow runC’s command line API closely.
– Standard is lagging behind runC, which is still changing quickly.
– No path for backward compatibility until more mature standards

are available.

16

Volume Management

Guest kernel

Hyperstart

Rootfs

Rootfs

Container
process

Container
process

/run/hyper/vm-WLnhbgyMsk/…/rootfs/

/bin
/etc

…

Docker
daemon

layer1
layer2
layer3

Volume
driver

/VolB /VolA

/host1

local plugin

/host2

image

NFS
Server

9pfs

17

Networking

Guest kernel

Hyperstart

Rootfs

Rootfs

Container
process

Container
process

Docker
daemon

Libnetwork

Bridge overlay Remote

Net Namespace

pseudo-Container

nslistener

Bridge
driver

OVS
driver

Linux bridge / ovs bridge

……

veth

veth

Tap

18

1..1

More features

• Use a custom guest kernel

• Resource QoS throttling [cpu, memory,
storage, network]

– VM level Resource QoS (with qemu)

– Container level Resource QoS (with cgroups, tc, …)

• Status, monitoring …

19

Virtualization support (“uVM”)

To support the Secure Container
use case we need changes in the

Virtualization stack!

20

Current KVM stack for x86 Linux Server Virtualization

Linux host OS

Linux guest OS
Virtio-pci guest driver

Memory Management

 QEMU

Guest Virtual Firmware (ACPI, SeaBIOS, SMBIOS, …)

QEMU PCI440fx or Q35 Intel Board model

PCI model

Virtio-pci backend

 TCG (Tiny Code Generator)

Emulated devices –
USB, bluetooth, PCMCIA, VGA, …

Linux host File System

Linux guest File System

CPU Models,
CPU emulation, FPU emulation

Memory Management

KVM

21

Linux guest File System

Linux guest OS Copy on write , …

Current KVM stack for x86 Linux Server Virtualization

Linux host OS

KVM

Virtio-pci guest driver

Memory Management

 QEMU

Guest Virtual Firmware (ACPI, SeaBIOS, SMBIOS, …)

QEMU PCI440fx or Q35 Intel Board model

PCI model

Virtio-pci backend

 TCG (Tiny Code Generator)

Emulated devices –
USB, bluetooth, PCMCIA, VGA, …

Linux host File System

CPU Models,
CPU emulation, FPU emulation

Memory Management

Host MM

Skip guest FS with virtio-9p

Replace with hotpluggable PCI

Replace with minimal pc-uvm

Replace with Qboot + MPTABLES

Remove

Remove

Remove

KSM

Minimal build, heap optimization

22

Result: a VM built for Containers
1. Boot time on a spinning disk with Xeon platform is around 0.1s from uVM start of QEMU

process to guest application – Enough for now

2. 20MB directly cut from the memory overhead of QEMU, plus proportional
improvements per VM (PSS), KSM for long term saves with minimal cpu investment.

Working on Copy on Write kernel and initrd (X86 and ARM, no ACPI)
Exploring QEMU process data segments copy on write, […]

3. Cpu and memory performance benchmarks show no negative impact of the changes.

4. Virtio 9p performance improvement: 3x speed improvement on both large and small
blocks operations.

23

Container Boottime costs
Kubernetes, Docker, Virtualization impact on boottime.
Probably need to look at the Orchestration now!
3+ seconds even in the minimal config until the container is scheduled to run.

K8S Master

Minion (Secure Container) Minion (Native Container)

Docker

Native Container

Docker

Secure Container

K8S Time
(3+ sec in the
minimal config)

Total
Docker Container
boottime ~0.25s

Total
Docker Container
boottime ~0.35 s

24

Specialization tradeoffs
These results are possible also because some of the software components of a KVM
stack are actually unused for running modern Container services.

Part of the reason is also historical: the QEMU virtualizer has been actually designed
originally for software modeling, with the goal to model physical hardware in software.

•QEMU board model, emulated devices
•Firmware

Accurate modeling of
the physical hardware,

run any possible OS,
QEMU is self contained

Running workloads
controlled by

frameworks as
efficiently as possible

VS

25

uVM components summary

• uVM Firmware: uses Paolo’s Qboot + simple MPTABLE patch for SMP. Easier to
use and modify than SeaBIOS.
Qboot, kernel, hyperstart-initrd built together as a “firmware”.

• uVM QEMU: implements a new board model and new features

• uVM Linux: guest patches
* fastboot
* smp
* performance

• X86-64 and ARM-64 support

26

uVM x86 Board simplification
The Intel PCI-440fx has been used as the starting point for the uvm x86 board model.

27

uVM Board simplification

“Removed” many components, which means either a device config
(which is now considered for real), or an additional configure option or configure option fix.
==> minimal build: QEMU = 3 MB binary vs usual 40MB binary (*Note).

Action Items

Remove •ISA-DMA and other ISA devices. Just keep 1 serial, no parallel, no VGA, no floppies, etc.
•Power Management, ACPI and ACPI hot-plug
•SMBIOS, SMRAM and PCI-PAM
•TCG, Replay, Disassembly, Non-KVM CPU models
•PCMCIA, USB, BT, I2C

Add •new uVM default config
•pflash boot device cmdline support
•virtio-9p and virtio-net I/O bandwidth and iops limits, optimized memory footprint
•framework-controlled hotplug (Controlled by docker, RunV and guest init)

28

Linux host and guest OS
The Linux Host requirements: KVM, KSM, 4.1+

Tested with all kinds of generally available Linux-based Server OSes.

Guest OS is comprised of a optimized guest kernel and a simplified OS included in an init derived
from Hyperstart, which acts as an “agent” inside the VM to do the will of the framework
controlling the VM.

-9pfs optimizations for large chunks, adding layer to v9fs writeback path to minimize number of 9p
messages exchanged
-Removed bottlenecks from 9pfs to solve small chunks terrible performance
-9pfs optimizations for memory overhead
-allow SMP from cmdline params (no dep on BIOS or ACPI).

29

Example flow: container create
Kubernetes
Minion

Docker Daemon RunV
Guest OS init
(HyperStart)

PodSpec

docker run

Qemu-uvm

COMMAND RUN_POD
get configuration,
create comm channels,
launch QEMU on CBFS
ROM.

Online cpus, memory,
parse POD JSON,
rescan pci bus via sysfs,
setup dns
 Attach tty,

Free unused mem

Virtio-serial channel: INIT_STARTPOD

Parse Container JSON
Clone container processes and init
for each in POD
Setup IPC, Rescan SCSI, Setup ENV
Mount Rootfs, chroot, Execvp
process args.

Virtio-serial channel: INIT_NEWCONTAINER

OK

OK

OK

OK

QMP: net_add, device_add

OK

30

Example flow: net hotplug
Docker Daemon RunV

Guest OS init
(HyperStart)

docker network connect

Qemu-uvm

COMMAND DEV_INSERT
create interface
EVENT_INTERFACE_ADD

rescan pci bus via
sysfs

Virtio-serial channel: INIT_READY

QMP: net_add, device_add

OK

OK

OK

docker network disconnect
COMMAND DEV_REMOVE
EVENT_INTERFACE_DEL

QMP: device_del, net_del

OK

Virtio-serial channel: INIT_DELETE_INTERFACE remove from pci bus
via sysfs OK

OK

31

Upstream plans

• Full solution is started as internal project

• Started evaluations for production use

• Specific features are being contributed
upstream

32

QEMU upstreaming
• Better QoS for I/O

• 9p throttling
• virtio-net throttling

• QEMU configurability
• disable-tcg
• more configure options
• plain fixes

• Memory optimizations

33

Linux kernel upstreaming

• 9p file system improvements
• Performance improvements
• Fixes
• Benchmark comparisons and results

34

RunV upstreaming
• Volume support
• Pod support
• Network support

– Network information collection
– Ovs support

• Integration test framework
• Customize kernel/initrd
• Bugfix
• Others…(Cgroup, … still on the way)

35

References
QEMU: www.qemu.org
Development Mailing list: qemu-devel@nongnu.org
http://lists.nongnu.org/archive/html/qemu-devel/

KVM: www.linux-kvm.org
Development Mailing list: kvm@vger.kernel.org
ARM: kvmarm@lists.cs.columbia.edu

Linux kernel: www.kernel.org
Development Mailing list: linux-kernel@vger.kernel.org

Docker: www.docker.com/
Codes: https://github.com/docker/docker

Hyper: www.hyper.sh
RunV: https://github.com/hyperhq/runv
Hyperstart: https://github.com/hyperhq/hyperstart

Qboot: https://github.com/bonzini/qboot

…

36

mailto:qemu-devel@nongnu.org
mailto:qemu-devel@nongnu.org
mailto:qemu-devel@nongnu.org
http://lists.nongnu.org/archive/html/qemu-devel/
http://lists.nongnu.org/archive/html/qemu-devel/
http://lists.nongnu.org/archive/html/qemu-devel/
http://www.linux-kvm.org/
http://www.linux-kvm.org/
http://www.linux-kvm.org/
mailto:kvm@vger.kernel.org
mailto:kvmarm@lists.cs.columbia.edu
http://www.kernel.org/
mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
mailto:linux-kernel@vger.kernel.org
http://www.docker.com/
https://github.com/hyperhq/hyperstart
https://github.com/hyperhq/hyperstart
http://www.hyper.sh/
https://github.com/hyperhq/runv
https://github.com/hyperhq/hyperstart
https://github.com/bonzini/qboot

Thank you!

37

Comparison: ClearContainer 2.0
Feature Huawei Secure Container Intel ClearContainer 2.0

Bootloader QBoot QEMU pc-lite custom
bootloader from Pmode

Firmware none ACPI, …

Virtual platform QEMU pc-uvm (based on 440fx) QEMU pc-lite (based on Q35)

Rootfs Virtio-9p Virtio-9p

Guest Kernel uVM patches ClearLinux

Runtime runV COR

Guest OS Hyperstart init (.c) Mini-OS SystemD based guest

Hotplug control via RunV and Hyperstart Via QEMU-ACPI

Optimization focus Memory overhead reduction Bootime reduction

Architecture X86-64 and ARM64 X86-64 38

