Balancing Power and Performance in the Linux Kernel

Kristen Accardi

Power Management basics

P-states on Intel platforms

Limitations of OS p-state selection

Hardware P-states (HWP)

Degrees of Idleness

Suspend

User Initiated User tasks frozen Devices forced idle d-states S-states or Idle S3/S0iX/MWAIT

Runtime Idle

Opportunistic User tasks scheduled Opportunistic device idle d-states CPU C-states (S0iX)

Active Power Management

Active Power Management in Linux – Dim the Lights

- CPU active power management (cpufreq)
 - Aka P-states or DVFS
- Device Active Power management
 - Some device support such as PCIe ASPM
 - Device specific how to activate
- GPU does it's own thing

P-States != Frequency

P-States != Power

How do we pick the right p-state?

- Governors reflect user policy decision
 - intel_pstate supports only "powersave" and "performance" policies. Other drivers support more policies.
 - intel_pstate is actually a governor and hw driver all in one, whereas traditionally the governor is separate from the hw driver.
- intel_pstate "performance" policy always picks the highest p-state
 - Race to Halt or just don't care about energy
- intel_pstate "powersave" policy attempts to balance performance with energy savings
- The driver looks at utilization and capacity to determine whether to increase or decrease the p-state. This is similar to many other governors.

P-state basics

P-states on Intel platforms

Limitations of OS p-state selection

Hardware P-states (HWP)

P1 - Pn is GuaranteedP0 - P1 is turboPn - LFM for Thermal

How Turbo works (Intel Speed Step®)

 Cores which share the same voltage domain vote for a p-state

- Cores which share the same voltage domain vote for a p-state
- The highest p-state for each core wins

- Cores which share the same voltage domain vote for a p-state
- The highest p-state for each core wins
- APERF/MPERF must be used to see what pstate was granted

- Cores which share the same voltage domain vote for a p-state
- The highest p-state for each core wins
- APERF/MPERF must be used to see what pstate was granted
- acpi_cpufreq lies!!!!

P-state basics P-states on Intel platforms Limitations of OS p-state selection Hardware P-states (HWP)

Limitations of OS P-state selection

• Capacity/Utilization is insufficient for determining whether to scale

Limitations of OS P-state selection

- Capacity/Utilization is insufficient for determining whether to scale
- Sample rate may cause incorrect utilization calculation

Limitations of OS P-state selection

- Capacity/Utilization is insufficient for determining whether to scale
- Sample rate may cause incorrect utilization calculation
- Scaling benefits unclear

P-state basics P-states on Intel platforms Limitations of OS p-state selection Hardware P-states (HWP)

Intel[®] Speed Shift Technology (HWP)

- Most Efficient Frequency is Calculated at Runtime (Pe) Depends on system & workload
- EPP is Energy Performance Preference – will dictate how aggressive the algorithm (Pa) Depends on system, workload, OS
- Algorithm will operate between Pa and Pe

Address	Archite ctural	Register Name	Description
770H	Y	IA32_PM_ENABLE	Enable/Disable HWP.
771H	Y	IA32_HWP_CAPABILITIES	Enumerates the HWP performance range (static and dynamic).
772H	Y	IA32_HWP_REQUEST_PKG	Conveys OSPM's control hints (Min, Max, Activity Window, Energy Performance Preference, Desired) for all logical processor in the physical package.
773H	Y	IA32_HWP_INTERRUPT	Controls HWP native interrupt generation (Guaranteed Performance changes, excursions).
774H	Y	IA32_HWP_REQUEST	Conveys OSPM's control hints (Min, Max, Activity Window, Energy Performance Preference, Desired) for a single logical processor.
777H	Y	IA32_HWP_STATUS	Status bits indicating changes to Guaranteed Performance and excursions to Minimum Performance.
19CH	Y	IA32_THERM_STATUS[bits 15:12]	Conveys reasons for performance excursions
64EH	Ν	MSR_PPERF	Productive Performance Count.

Table 14-1. Architectural and Non-Architectural MSRs Related to HWP

	4 2 4	32 31	24 23	16 15	8	1
Reserved		81 8	13 2 5		98.—8	(2)
3997108 <u>29787</u> 89						
ekana Control						
Package_Control Activity_Window						
Package_Control Activity_Window Energy_Performance_Pre- Desired_Performance_Pre-	ference					
Package_Control Activity_Window Inergy_Performance_Pre- Desired_Performance - Maximum_Performance	ference					

Figure 14-7. IA32_HWP_REQUEST Register

Linux Implementation

- intel_pstate driver checks cpuflags for support
- Enabled by default for whitelisted CPUs
- Autonomous mode only
- No EPP exposed today
- Min and Max pstate can be requested via min and max perf_pct sysfs files

References

- 1. http://www.hotchips.org/wp-content/uploads/hc_archives/hc23/HC23.19.9-Desktop-CPUs/HC23.19.921.SandyBridge_Power_10-Rotem-Intel.pdf
- http://events.linuxfoundation.org/sites/events/files/slides/LinuxCon_Japan_20
 15_idle_injection1_0.pdf
- 3. http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.80-Processors2-epub/HC25.27.820-Haswell-Hammarlund-Intel.pdf
- 4. http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64ia-32-architectures-software-developer-manual-325462.pdf

