
Copyright © 2014 NTT Corp. All Rights Reserved.

Virtual switching technologies
and Linux bridge

Toshiaki Makita
NTT Open Source Software Center

2 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅVirtual switching technologies in Linux
ÅSoftware switches (bridges) in Linux

ÅSwitching technologies for KVM environment

ÅPerformance of switches

ÅUserland APIs and commands for bridge

ÅIntroduction to Recent features of bridge (and
others)
ÅFDB manipulation

ÅVLAN filtering

ÅLearning /flooding control

ÅFeatures under development
Å802.1ad (Q - in - Q) support for bridge

ÅNon - promiscuous bridge

Today's topics

3 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅLinux kernel engineer at NTT Open Source
Software Center

ÅTechnical support for NTT group companies

ÅActive patch submitter on kernel networking
subsystem

Åbridge, etc.

Who is Toshiaki Makita?

4 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅLinux has 3 types of software switches

Åbridge

Åmacvlan

ÅOpen vSwitch

Software switches in Linux

5 Copyright © 2014 NTT Corp. All Rights Reserved.

kernel

ÅHW switch like device (IEEE 802.1D)
ÅHas FDB (Forwarding DB), STP (Spanning tree), etc.
ÅUsing promiscuous mode that allows to receive all packets
ÅCommon NIC filters unicast whose dst is not its mac address

without promiscuous mode
ÅMany NICs also filter multicast / vlan - tagged packets by default

bridge

eth0

TCP/IP

kernel

eth0

TCP/IP

bridge

eth1

handler hook

pass to
upper layer

promiscuous
mode

without bridge with bridge

br0

if dst mac is bridge device

promiscuous
mode

6 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅVLAN using not 802.1Q tag but mac address

Å4 types of mode

Åprivate

Åvepa

Åbridge

Åpassthru

ÅUsing unicast
filtering if supported,
instead of promiscuous
mode
(except for passthru)

ÅUnicast filtering allows
NIC to receive multiple
mac addresses

macvlan

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

handler hook

unicast filtering

7 Copyright © 2014 NTT Corp. All Rights Reserved.

External GW

Åvlan device like
behavior

ÅNot a bridge

ÅProhibit inter -
macvlan traffic
(except for those
 via external GW)

macvlan (private mode)

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

External SW

8 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSimilar to private
mode

ÅAllow traffic
between macvlans
(via external SW)

macvlan (vepa mode)

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

External SW

9 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅLight weight bridge

ÅNo source learning

ÅNo STP

ÅOnly one uplink

ÅAllow traffic
between macvlans
(via macvlan stack)

macvlan (bridge mode)

kernel

eth0

macvlan0 macvlan1

MAC address A MAC address B

macvlan

External SW

10 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅAllow only one macvlan
device

ÅUsed for VM (as macvtap)

ÅPromiscuous

Åallow VM to use any mac
address / vlan device

macvlan (passthru mode)

kernel

eth0

macvlan0

MAC address A

macvlan

External SW

promiscuous

11 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSupports OpenFlow
ÅCan be used as a normal switch as well
ÅHas many features (VLAN tagging, VXLAN, GRE, bonding, etc.)

ÅFlow based forwarding
ÅControl plane in user space
Åf low miss - hit causes upcall to userspace daemon

Open vSwitch

kernel

eth0

user space

openvswitch
(datapath)
data plane

eth1

handler hook

promiscuous
mode

OpenFlow
controller

daemon
(ovs-vswitchd)
control plane

upcall

Flow table
(cache)

Flow table

FDB

12 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSoftware switches

Åbridge

Åmacvlan

ÅOpen vSwitch

ÅHardware switch

ÅNIC embedded switch (in SR - IOV device)

Switching technologies for KVM

13 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅUsed with tap device

ÅTap device

Åpacket transmission - > file read

Åfile write - > packet reception

bridge with KVM

kernel

eth0

bridge

tap0

qemu / vhost

vfs

Guest

eth0

fd

read/write

14 Copyright © 2014 NTT Corp. All Rights Reserved.

Åmacvtap

Åtap - like macvlan variant

Åpacket reception
 - > file read

Åfile write
 - > packet transmission

macvtap (private, vepa , bridge) with KVM

kernel eth0

macvtap0 macvtap1

macvlan

qemu / vhost

Guest

eth0

fd

read/write

qemu / vhost

Guest

eth0

fd

read/write

15 Copyright © 2014 NTT Corp. All Rights Reserved.

Åmacvtap passthru mode

ÅPCI- passthrough like mode

ÅGuest can exclusively use physical
device

ÅGuest can use any mac address /
vlan interface

ÅGuest can use promiscuous mode

ÅOther modes uses unicast filtering

ÅDon't allow to receive mac address
except for macvtap device's

ÅDon't allow vlan tagged packets if
NIC has vlan filtering feature

macvtap (passthru) with KVM

kernel eth0

macvtap0

macvlan

qemu / vhost

Guest

eth0

fd

read/write

promiscuous

16 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅConfiguration is the same as
bridge

Åused with tap device

Open vSwitch with KVM

kernel

eth0

openvswitch

tap0

qemu / vhost

vfs

Guest

eth0

fd

read/write

17 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSR- IOV

ÅAddition to PCI normal physical function (PF),
allow to add light weight virtual functions (VF)

ÅVF appears as a network interface (eth0_0, eth0_1...)

ÅSome SR - IOV devices have switches in them

Åallow PF - VF / VF - VF communication

NIC embedded switch (SR - IOV)

kernel SR-IOV supported NIC

eth0 eth0_0 eth0_1

PF VF VF

embedded switch

18 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSR- IOV with KVM

ÅUse PCI - passthrough to attach VF to guest

NIC embedded switch (SR - IOV)

kernel SR-IOV supported NIC

eth0

embedded switch

qemu

Guest

qemu

Guest

eth0_1 eth0_0

19 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅSR- IOV with KVM

ÅOr use macvtap (passthru)

Åmigration - friendly

NIC embedded switch (SR - IOV)

kernel SR-IOV supported NIC

eth0

embedded switch

eth0_1 eth0_0

macvtap1

qemu / vhost

Guest

eth0

fd

macvtap0

qemu / vhost

Guest

eth0

fd

20 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅEnvironment

ÅTest results

ÅThroughput

ÅOverhead on host

Performance of switches

21 Copyright © 2014 NTT Corp. All Rights Reserved.

Åkernel 3.14.4 (2014/5/13 Release)
ÅHost: Xeon E5 - 2407 4 core * 2 socket

ÅNIC: 10GbE, Intel 82599 chip (ixgbe)
ÅGuest: 2 core *1
ÅHW Switch: BLADE G8124
ÅBenchmark tool: netperf - 2.6
ÅUDP_STREAM test (1518 byte frame length)

Performance: environment

host host

guest

bridge etc.

82599 82599 BLADE G8124

netperf

netserver

UDP packets

*1: Pinning on host: vcpus -> CPU0~3, vhost -> CPU1. NIC irq affinity on host: 0x1 (CPU0).
 Pinning on guest: netserver process -> CPU1. NIC irq affinity on guest: 0x1 (CPU0).

22 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅReceive throughput on guest
ÅSR- IOV (PCI - passthrough) has the highest -

performance

ÅSoftware switches are 6%~14% worse than SR - IOV
(PCI - passthrough)

Performance: throughput

0

1

2

3

4

5

6

7

T
h

ro
u

g
h

p
u

t
(

G
b

p
s

)

23 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅOverhead (CPU usage) on host

ÅSR- IOV (PCI - passthrough)
has the lowest overhead

ÅCPU usage by system and
irqs are close to 0

ÅCPU usage by macvtap is
24~29% lower than
bridge / Open vSwitch

Performance: Overhead on host

0

50

100

150

200

250

300

350

C
P

U
 u

sa
g
e
 (

%
)

user

system

hardirq

softirq

0

50

100

150

200

250

C
P

U
 u

sa
g
e
 (

%
)

vcpu1

vcpu0

vhost

24 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅVarious APIs

Åioctl

Åsysfs

Ånetlink

ÅNetlink is preferred for new features

ÅBecause it is extensible

Åsysfs is sometimes used

ÅCommands

Åbrctl (in bridge - utils , using ioctl / sysfs)

Åip / bridge (in iproute2, using netlink)

Userland APIs and commands (bridge)

25 Copyright © 2014 NTT Corp. All Rights Reserved.

Åbrctl

ÅThese operations are now realized by netlink
based commands as well (Since kernel 3.0)

ÅAnd recent features can only be used by netlink
based ones or direct sysfs write

Userland APIs and commands (bridge)

brctl addbr <bridge > ... create new bridge
brctl addif <bridge> <port > ... attach port to bridge
brctl showmacs <bridge > ... show fdb entries

ip link add <bridge> type bridge ... create new bridge
ip link set <port> master <bridge> ... attach port
bridge fdb show ... show fdb entries

bridge fdb add
bridge vlan add
etc...

26 Copyright © 2014 NTT Corp. All Rights Reserved.

ÅFDB manipulation

ÅVLAN filtering

ÅLearning / flooding control

Recent features of bridge (and others)

