

Virtual switching technologies and Linux bridge

Toshiaki Makita NTT Open Source Software Center

Copyright © 2014 NTT Corp. All Rights Reserved.

Today's topics

Virtual switching technologies in Linux

- Software switches (bridges) in Linux
- Switching technologies for KVM environment
- Performance of switches
- Userland APIs and commands for bridge
- Introduction to Recent features of bridge (and others)
 - FDB manipulation
 - VLAN filtering
 - Learning/flooding control

Features under development

- 802.1ad (Q-in-Q) support for bridge
- Non-promiscuous bridge

Who is Toshiaki Makita?

- Linux kernel engineer at NTT Open Source Software Center
- Technical support for NTT group companies
- Active patch submitter on kernel networking subsystem
 - bridge, etc.

Software switches in Linux

- Linux has 3 types of software switches
 - bridge
 - macvlan
 - Open vSwitch

bridge

• HW switch like device (IEEE 802.1D)

- Has FDB (Forwarding DB), STP (Spanning tree), etc.
- Using promiscuous mode that allows to receive all packets
 - Common NIC filters unicast whose dst is not its mac address without promiscuous mode
 - Many NICs also filter multicast / vlan-tagged packets by default

with bridge

macvlan

- VLAN using not 802.1Q tag but mac address
- 4 types of mode
 - private
 - vepa
 - bridge
 - passthru
- Using unicast filtering if supported, instead of promiscuous mode (except for passthru)
 - Unicast filtering allows NIC to receive multiple mac addresses

macvlan (private mode)

- vlan device like behavior
- Not a bridge
- Prohibit intermacvlan traffic (except for those via external GW)

macvlan (vepa mode)

- Similar to private mode
- Allow traffic between macvlans (via external SW)

macvlan (bridge mode)

Light weight bridge

- No source learning
- No STP
- Only one uplink
- Allow traffic
 between macvlans
 (via macvlan stack)

macvlan (passthru mode)

- Used for VM (as macvtap)
- Promiscuous
 - allow VM to use any mac address / vlan device

Open vSwitch

Supports OpenFlow

Can be used as a normal switch as well

- Has many features (VLAN tagging, VXLAN, GRE, bonding, etc.)
- Flow based forwarding
- Control plane in user space
 - flow miss-hit causes upcall to userspace daemon

Switching technologies for KVM

Software switches

- bridge
- macvlan
- Open vSwitch

Hardware switch

NIC embedded switch (in SR-IOV device)

bridge with KVM

- Tap device
 - packet transmission -> file read
 - file write -> packet reception

macvtap (private, vepa, bridge) with KVM

macvtap

- tap-like macvlan variant
- packet reception
 -> file read
- file write
 - -> packet transmission

macvtap (passthru) with KVM

- PCI-passthrough like mode
- Guest can exclusively use physical device
- Guest can use any mac address / vlan interface
- Guest can use promiscuous mode
- Other modes uses unicast filtering
 - Don't allow to receive mac address except for macvtap device's
 - Don't allow vlan tagged packets if NIC has vlan filtering feature

novative B&D h

Open vSwitch with KVM

Configuration is the same as bridge

- qemu/vhost Guest eth0 fd read/write kernel openvswitch vfs eth0 tap0
- used with tap device

NIC embedded switch (SR-IOV)

• SR-IOV

- Addition to PCI normal physical function (PF), allow to add light weight virtual functions (VF)
- VF appears as a network interface (eth0_0, eth0_1...)
- Some SR-IOV devices have switches in them
 - allow PF-VF / VF-VF communication

• SR-IOV with KVM

Use PCI-passthrough to attach VF to guest

NIC embedded switch (SR-IOV)

SR-IOV with KVM

- Or use macvtap (passthru)
 - migration-friendly

Performance of switches

- Environment
- Test results
 - Throughput
 - Overhead on host

Performance: environment

novative R&D by

- kernel 3.14.4 (2014/5/13 Release)
- Host: Xeon E5-2407 4 core * 2 socket
- NIC: 10GbE, Intel 82599 chip (ixgbe)
- Guest: 2 core^{*1}
- HW Switch: BLADE G8124
- Benchmark tool: netperf-2.6
 - UDP STREAM test (1518 byte frame length)

*1: Pinning on host: vcpus -> CPU0~3, vhost -> CPU1. NIC irg affinity on host: 0x1 (CPU0). Pinning on guest: netserver process -> CPU1. NIC irq affinity on guest: 0x1 (CPU0). Copyright © 2014 NTT Corp. All Rights Reserved.

21

Performance: throughput

Receive throughput on guest

- SR-IOV (PCI-passthrough) has the highestperformance
- Software switches are 6%~14% worse than SR-IOV (PCI-passthrough)

Overhead (CPU usage) on host

- SR-IOV (PCI-passthrough) has the lowest overhead
 - CPU usage by system and irqs are close to 0
- CPU usage by macvtap is 24~29% lower than bridge / Open vSwitch

Userland APIs and commands (bridge)

Various APIs

- ioctl
- sysfs
- netlink

Netlink is preferred for new features

- Because it is extensible
- sysfs is sometimes used

Commands

- brctl (in bridge-utils, using ioctl / sysfs)
- ip / bridge (in iproute2, using netlink)

Userland APIs and commands (bridge)

• brctl

- # brctl addbr <bridge>
 # brctl addif <bridge> <port>
 # brctl showmacs <bridge>
- ... create new bridge ... attach port to bridge ... show fdb entries
- These operations are now realized by netlink based commands as well (Since kernel 3.0)

ip link add <bridge> type bridge ... create new bridge
ip link set <port> master <bridge> ... attach port
bridge fdb show ... show fdb entries

- And recent features can only be used by netlink based ones or direct sysfs write
 - # bridge fdb add
 # bridge vlan add
 etc...

Recent features of bridge (and others)

- FDB manipulation
- VLAN filtering
- Learning / flooding control

• FDB

- Forwarding database
- Learning: packet arrival triggers entry creation
 - Source MAC address is used with incoming port
- Flood if failed to find entry
 - Flood: deliver packet to all ports but incoming one

FDB manipulation commands

• Since kernel 3.0

bridge fdb add <mac address> dev <port> master temp
bridge fdb del <mac address> dev <port> master

bridge fdb add <mac address> dev <port> master temp

•What's "temp"?

- There are 3 types of FDB entries
 - permanent (local)
 - static
 - others (dynamically learned by packet arrival)
- "temp" means static here
- "bridge fdb"'s default is permanent
- *permanent* here means
 "deliver to bridge device"
 (e.g. br0)
- *permanent* doesn't deliver to specified port

•What's "master"?

bridge fdb add <mac address> dev <port> master temp

- Remember this command
 - # ip link set <port> master <bridge> ... attach port
- "bridge fdb"'s default is "self"
 - It adds entry to specified port (eth0) itself!

• When to use "self"?

- Some NIC embedded switches support this command
 - ixgbe, qlcnic
- macvlan (passthru) and vxlan also support it

• Example: Intel 82599 (ixgbe)

- Someone thinks of using both bridge and SR-IOV due to limitation of number of VFs
- bridge puts eth0 (PF) into promiscuous, but...
 - Unknown MAC address from VF goes to wire, not to PF

• Example: Intel 82599 (ixgbe)

- Type "bridge fdb add A dev eth0" on host
- Traffic to A will be forwarded to bridge

VLAN filtering

•802.1Q Bridge

- Filter packets according to vlan tag
- Forward packets according to vlan tag as well as mac address
- Insert / strip vlan tag

VLAN filtering

Ingress / egress filtering policy

- Incoming / outgoing packet is filtered if matching filtering policy
- Per-port per-vlan policy
- Default is "disallow all vlans"
 - All packets are dropped

VLAN filtering

• PVID (Port VID)

- Untagged (and VID 0) packet is assigned this VID
- Per-port configuration
- Default PVID is none (untagged packet is discarded)

Egress policy untagged

- Outgoing packet that matches this policy get untagged
- Per-port per-vlan policy

Commands

• Enable VLAN filtering (disabled by default)

echo 1 > /sys/class/net/<bridge>/bridge/vlan_filtering

Add / delete allowed vlan

bridge vlan add vid <vlan_id> dev <port>
bridge vlan del vid <vlan id> dev <port>

- Dump setting

bridge vlan show

Note: bridge device needs "self"

bridge vlan add vid <vlan_id> dev br0 self
bridge vlan del vid <vlan id> dev br0 self

VLAN with KVM

Traditional configuration

- Use vlan devices
- Needs bridges per vlan
- Low flexibility
- How many devices?

<pre># ifconfig -s</pre>
Iface
eth0
eth0.10
br10
eth0.20
br20
eth0.30
br30
eth0.40
br40

. . .

VLAN with KVM

With VLAN filtering

- Simple
- Flexible
- Only one bridge

```
# ifconfig -s
Iface ...
eth0
br0
```


VLAN with KVM

Other switches

- Open vSwitch
 - Can also handle VLANs

ovs-vsctl set Port <port> tag=<vid>

- NIC embedded switch
 - Some of them support VLAN (e.g. Intel 82599)

ip link set <PF> vf <VF_num> vlan <vid>

Learning / flooding control

- Limit mac addresses guest can use
- Reduce FDB size
- Used with static FDB entries ("bridge fdb" command)
- Disable FDB learning on particular port
 - Since kernel 3.11
 - No dynamic FDB entry
- Don't flood unknown mac to specified port
 - Since kernel 3.11
 - Control packet delivery to guests

• Commands

- # echo 0 > /sys/class/net/<port>/brport/learning
- # echo 0 > /sys/class/net/<port>/brport/unicast_flooding

Features under development

- 802.1ad (Q-in-Q) support for bridge
- Non-promiscuous bridge

Innovative R&D by N

802.1ad (Q-in-Q) support for bridge

802.1ad allows stacked vlan tags

MAC .1ad tag	.1Q tag	payload
--------------	---------	---------

- Outer 802.1ad tag can be used to separate customers
 - Example: Guest A, B -> Customer X Guest C, D -> Customer Y
- Inner 802.1Q tag can be used inside customers

• Customer X and Y can use any 802.1Q tags

802.1ad (Q-in-Q) support for bridge

qemu Bridge preserves qemu Guest A guest .1Q tag (vid Guest C eth0.30 30) when inserting .1ad tag (vid 10) eth0 eth0 .10 VID 30 .1ad tag will be tap0 tap1 stripped at .1ad VID 10 pvid/untag pvid/untag another end .10 VID 30 vlan 10 vlan 20 point of .1ad bridge (.1ad mode) network vlan10 / 20 eth₀ kernel .1ad VID 10 .10 VID 30 .1Q VID 30 Customer's .1ad network another site Copyright © 2014 NTT Corp. All Rights Reserved. 44

Innovative R&D by NT

Non-promiscuous bridge

- If there is only one learning/flooding port, it can be non-promisc
- Instead of promisc mode, unicast filtering is set for static FDB entries
- Automatically enabled if meeting some conditions
 - There is one or zero learning & flooding port
 - bridge itself is not promiscuous mode
 - VLAN filtering is enabled
- Overhead will get closer to macvlans

Summary

Linux has 3 types of software switches

- bridge, macvlan (macvtap), Open vSwitch
- SR-IOV NIC enbedded switch can also be used for KVM

Bridge's recent features

- FDB manipulation
- VLAN filtering
- Learning / Flooding control

Features under development

- 802.1ad (Q-in-Q) support
- Non-promiscuous bridge

Thank you for listening. Any questions?

Copyright © 2014 NTT Corp. All Rights Reserved. 47