Western Digital.

A Tail of Latency, IOPs, & IO Priority

Adam Manzanares, Filip Blagojevic, Cyril Guyot

adam.manzanares@wdc.com

You want what from my HDD?

- Capacity -> Here is a 12 TB HDD
- Low \$/TB -> Here is a 12 TB HDD

- IOPs 200 4k Rand Read IOPs at QD 32
- Throughput 243 MB/s
- Better tail latency lets work together

How do we enable each other?

- HDD is peripheral
 - Under management by OS
 - Well defined interface for OS to HDD communication
 - SATA, SCSI
- Application runs on OS
 - Well defined interface to storage
 - File System, Block Access
- Let's deliver application semantics to the HDD
 - What, How, and Why

- Our Example Today
 - Binary priority to the HDD
 - 12 TB SATA HDD Supports NCQ Priority
- Linux Supports IOPriority
 - Not so fast
 - Priority used for One Particular Block Scheduler
 - Priority Is Not Passed To The Drive
- This talk discusses
 - Why Priority To The Device Is Important
 - What We Did to Get Priority To The Device
 - Results

Where To Handle Priority In The IO Stack

Block Layer Priorities

PROS

- No support needed from device
- Flexibility in implementation
 - Scheduler can be modified rather easily
 - Linux source code is available

Cons

- Request makes it to device
 - Priority no longer exists
- Devices may have large queue sizes
 - Your high priority request can be delayed significantly
- Implemented by time slicing
 - High priority requests could be significantly delayed
 - Before hitting the device queue

Device Priorities

PROS

- Device will service high priority requests first
 - Should improve latency
- Block layer scheduler irrelevant?
 - Hints of this with NVMe

Cons

- Device must support priority
- What does device do with priority?
 - This can not be changed easily
 - Most don't have access to FW

SATA NCQ & Priority

<u>Serial Advanced Technology Attachment</u>

- BUS protocol for HDD to host communication
- <u>Native</u> <u>Command</u> <u>Queuing</u>
 - SATA feature that defines mechanism for multiple outstanding IOs between host and device
 - Currently supports 31 outstanding commands
- Drive is allowed to reorder commands
 - Achieves better throughput
 - User loses control of when a particular IO is completed.

- NCQ Supports Priority Bit In Read and Write NCQ commands
- What does the drive do with prioritized NCQ commands?

QD vs IOPs & Tail Latency

How Are IO Priorities Used In Linux Currently

- System call exists to set IO priorities
 - ioprio_set
 - Priority info currently only used by CFQ scheduler
 - Set in kernel io context which is associated with a process, process group, or user
 - ionice utility can be used
- User Space IO Converted to BIO in Kernel
 - read(), write(), pread(), pwrite() ... eventually generate BIO inside of the kernel
- BIO mapped to a request
 - Request queues are managed by block schedulers
- Request structure
 - Has a priority field
 - IO context only relevant if CFQ scheduler is used

- Request based device drivers convert requests to device specific commands
 - May be a layered path to device, SCSI to libata, SCSI to mpt3 SAS, ...
- CFQ Scheduler
 - Creates queues based on priority classes
 - Time slices across these queues

What we Want to Do, Why, and How

IO priorities passed to the drive

- Not just to the CFQ scheduler, allowing use of all kernel schedulers
- Make sure common request submission pathways pass IO priority information to devices.
- Drive level priority should enable finer grained control
 - Currently, priorities not passed to drive
 - Low priority IO equivalent to high priority IO at the drive
 - Guarantees high priority IO is respected in the drive queues

- Grab priority from IO context
 - Done when BIO is converted to request
 - Request has an io priority field
 - System call does not set this field
- Lower layer leverages request priority
 - Libata builds ata commands with high priority
 - mpt3sas (Broadcom HBAs) flag command as being high priority
 - HBA correctly builds high priority SATA command
 - MicoSemi HBAs TBD
- Libata
 - Recognize IO priority in SCSI command and build SATA command with priority information

Areas Of Kernel Modified

Western Digital.

https://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Some Block Layer Code

static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)

Function takes bio and places it on a request queue. Eventually makes a call to:

Which gets a free request and initializes it. We added a call to the following in _____get_request:

```
static inline void blk_rq_set_prio(struct request *rq, struct io_context *ioc)
{
    if (ioc)
        rq->ioprio = ioc->ioprio;
}
```

Some Libata Code

+

@@ -1755,6 +1756,8 @@ static unsigned int ata_scsi_rw_xlat(struct ata_queued_cmd *qc)

```
struct scsi_cmnd *scmd = qc->scsicmd;
const u8 *cdb = scmd->cmnd;
struct request *rq = scmd->request;
int class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
```

```
int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev, u64 block, u32 n_block,
                    unsigned int tf flags,
                     unsigned int tag)
                     unsigned int tag, int class)
+
{
        tf->flags |= ATA TFLAG ISADDR | ATA TFLAG DEVICE;
        tf->flags |= tf_flags;
@@ -785,6 +786,12 @@ int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
        tf->device = ATA LBA;
         if (tf->flags & ATA_TFLAG_FUA)
                 tf->device |= 1 << 7;
+
                  if (dev->flags & ATA DFLAG NCQ PRIO) {
+
                          if (class == IOPRIO CLASS RT)
                                   tf->hob nsect |= ATA PRIO HIGH << ATA SHIFT PRIO;
Western Digital.
```

But My HDD is Not Connected Through AHCI

- We have tested and completed patches to enable priority when using a couple of Broadcom HBAs
- Changes merged into 4.10
- Investigating how to get this done with MicroSemi HBAs
- HBA Vendors Contact Us

How to set IO Priorities In Applications

• Turn on sata ncq priority support

- SATA
 - /sys/devices/pci0000:00/0000:00:1f.2/ata8/host7/target7:0:0/7:0:0:0/ncq_prio_enable
- MPT3SAS
 - /sys/device/*/sas_ncq_prio_enable

ionice

- Linux Utility
- set/get process I/O scheduling class and priority
- Use process id, process group id, or a user id
- ioprio_set, ioprio_get
 - Systems calls to get/set scheduling class and priority
 - <u>https://www.kernel.org/doc/Documentation/block/ioprio.txt</u>
- Do you want a quick test with fio
 - Use the prioclass and prio arguments

sudo fio --ioengine=libaio --iodepth=1 --rw=randread --bs=4k --direct=1 --numjobs=1
--time_based --runtime=300 --filename=/dev/sdb --randrepeat=0 --prioclass=1 --prio=7

Benchmark

- Background IO
 - FIO Random Read
 - 4KiB Block Size
 - Run time = 5m
 - Queue Depth = 32
 - ioengine = libaio
- Foreground IO
 - FIO Random Read
 - 4KiB Block Size
 - Run time = 5m
 - ioengine = libaio
 - Queue Depth = {1,4,16,32}
- Schedulers used
 - Deadline with/without drive priority
 - NOOP with/without drive priority
 - CFQ with/without priority & CFQ with priority and drive priority

NOOP Scheduler

Deadline Scheduler

CFQ Scheduler

Some Kernel Files Modified

- block/blk-core.c
 - When request is initialized for a bio we now set the iopriority from the io context of the current process
- One block patch committed
 - 5dc8b362a2374d007bc0db649b7ab6a79dd32bda
- drivers/ata/libata-scsi.c
 - ata_scsi_rw_xlat()
 - grab request from scsi command, use this to get priority class
- Four libata/ahci patches committed
 - 8e061784b51ec4a4efed0deaafb5bd9725bf5b06
 - 84f95243b5439a20c33837075b88926bfa00c4ec
 - 4e647d960c510e0d5cd700058fb8ddd529c390ee
 - 9f56eca3aeeab699a7dbfb397661d2eca4430e94

- drivers/ata/libata-core.c
 - ata_build_rw_tf
 - Add priority class, if device supports priorities build ATA tf with high priority
 - ata_dev_config_ncq_prio
 - Check identify log page priority support
 - ata_id_has_ncq_prio
 - check if identify priority bit is set
 - added functions for adding a sysfs entry
 - also changed includes to ata device flag for indicating if prioritized commands should be used
- drivers/scsi/mpt3sas/*
 - HBA command set as high priority when request is set as high prio
 - sysfs entries to enable/disable feature
 - scsi probe functions to discover
- Once mpt3sas patch committed
 - 307d9075a02b696e817b775c565e45c4fa3c32f2

Future Directions

- How do schedulers/devices/priorities mix?
 - CFQ has some unexpected results
 - What causes this and can device priority help?
 - BFQ algorithms may be improved with priority
 - Currently looking into this
- How many priorities does an application need?
 - Currently high/regular
- Is a latency cut off a better mechanism to control tail latency?

- How does this work translate to distributed storage systems?
- Should repair priority be a function of the state of the cluster?
 - Enough redundancy low priority rebuild
 - High priority rebuild when necessary
- Do classes of users map cleanly into priorities?
- Will this be mapped onto NVMe devices using prioritized queues or using prioritized commands?

Thanks for your attention.

Any additional questions? Contact me at:

adam.manzanares@wdc.com

