
Multipathing PCI-Express

Storage

Keith Busch

Linux Vault

12 March 2015

Agenda
(in no particular order)

• Why we care

• PCI-e Storage Standardization

• Storage stacking details

• Results and future work

PCI-e Storage Standard:

Non-Volatile Memory Express

NVMe: Who

NVMe: What

Storage standard defining:

• Host controller interface

• Queueing model

• Command set

Designed for performance
and scalability in mind

NVMe: Why

1

10

100

1000

10000

100000

1000000

1990 2000 2010 2020

R
EL

A
TI

V
E

P
ER

FO
R

M
A

N
C

E
Lo

g
sc

al
e

(n

o
t

n
ec

e
ss

ar
ily

 1
0

0
%

 a
cc

u
ra

te
)

CPU vs. Storage Performance Gap

NVMe: Why

… but PCI-e storage predates NVMe, right?

NVMe: Why

http://xkcd.com/927/

NVMe: When

NVMe: How

Offset Symbol Description

00h CAP Controller Capabilities

08h VS Version

0Ch INTMS Intterupt Mask Set

10h INTMC Interrupt Mask Clear

14h CC Controller Configuration

18h Rsvd Reserved

1Ch CSTS Controller Status

20h NSSR NVM Subsystem Reset

24h AQA Admin Queue Attributes

28h ASQ Admin Submission Queue Base Address

30h ACQ Admin Completion Queue Base Address

38h Rsvd Reserved

F00h Rsvd Command set Specific

1000h SQ 0 TDBL Admin Submission Queue Tail Doorbell

1000h + (1 * 4 << CAP.DSTRD) CQ 0 HDBL Admin Completion Queue Head Doorbell

1000h + (2 * 4 << CAP.DSTRD) SQ 1 TDBL IO Submission Queue 1 Tail Doorbell

1000h + (3 * 4 << CAP.DSTRD) CQ 1 TDBL IO Completion Queue 1 Head Doorbell

NVMe: How

NVMe: How

 Byte
Word

3 2 1 0

0 Command ID Flags Opcode

1 Namespace ID

2
Reserved

3

4
Metadata Pointer

5

6
PRP 1

7

8
PRP 2

9

10

Command DWORDS 10 - 15

11

12

13

14

15

NVMe: How

NVMe: How

NVMe: Where

NVMe: Where

NVMe: Where

NVMe: per-cpu h/w queues

When CPUs exceed available h/w queues

Share with your neighbors

NVMe: CPU Efficient

Submission latency and CPU
cycles reduced >50%*:

• NVMe: 2.8us, 9,100 cycles

• SAS: 6.0us, 19,500 cycles

* Measurement taken on Intel® Core™ i5-2500K 3.3GHz 6MB L3 Cache Quad-Core Desktop Processor using Linux kernel 3.12

The importance of reducing software
latency

NVMe: When we know we succeeded

NVMe: When we know we succeeded

root@pc# grep "SCSI\|NVM" .config

CONFIG_BLK_DEV_NVM=y

CONFIG_SCSI is not set

NVMe: Original Driver Implementation

• bio-based for
performance: lockless
block layer

• Driver burdened to
manage:

– timeouts, io statistics,
h/w access, tagging, SGL
mapping, trace points,
queue-to-cpu binding,
splitting

Converting NVMe to Request Based

• High IOPS devices
cannot reach their
potential under single
lock

Converting NVMe to Request Based

• High IOPS devices
cannot reach their
potential under single
lock

• But blk-mq can be
multithreaded all the
way to the h/w

Supporting blk-mq from dm-mpath

• Problems:

– Required clone before path chosen

– Submission occurs in atomic context

Supporting blk-mq from dm-mpath

• Request handling deferred to worker thread

• Clone allocated from path’s request_queue

PCI-e Storage Multipathing

NVM-e: Subsystems

NVMe: Identifying Paths

• IEEE EUI-64 and
NGUID globally
unique identifiers in
a subsystem

• Linux tooling relies
on SG_IO to inquire
device identification
and access
restriction

Know your PCI-e Topologies:
Which is invalid?

A B C

blk-mq + dm-mpath in kernel 4.0-rc1

Credits:

• Matias Bjørling: nvme conversion

• Mike Snitzer: multipath device-mapper

• Jens Axboe: block multiqueue

• Bart Van Assche: regression debugging

• Christoph Hellwig: moral support

Still more work to do!

Multipathing for performance

• Submitting I/O to
device on remote
NUMA node incurs
additional latency

• Worsens as node count
increases

Case Study: 32 Sockets, 960 CPUs

• NUMA penalty: >30%
performance lost

• NUMA “trickery”
recovered:

– irqbalance, numactl,
libnuma, custom cpu-
queue mapping

– 30 Million IOPS (SC’14)

The cost of NUMA

0%

5%

10%

15%

20%

25%

30%

35%

1 Node 2 Node 4 Node 8 Node 32 Node

Number NVMe: 2x node count, 4k random read to all drives
No CPU pinning

Observed Performance Loss on Randomly Scheduled Workloads

Locality based path selection proposal

• NUMA aware path
selection: choose path
closest to dispatching CPU

• Ineffective in 4.0: single
threaded dispatch

NVMe mpath performance in 4.0

0%

25%

50%

75%

100%

bs=128k, iodepth=32,
numjobs=1

bs=4k, iodepth=16,
numjobs=8

P
e

rc
e

n
t

o
f

ra
w

 d
ev

ic
e

 a
cc

e
ss

p

e
rf

o
rm

an
ce

Request based DM performance comparison

Series1

device-mapper blk-mq conversion

• Parallelizes entire stacking layer
– Make blk-mq entry capable in preempt disabled

context

• queue setup: how to determine number of “h/w”
queues and tags per queue to allocate
– Want enough to satisfy h/w, but not wasteful

• Developed by Mike Snitzer during LSFMM
– performs at 99% raw speed in fio benchmarks on

tested NVMe h/w

• Staged for Linux kernel 4.1 integration

Alternative multipath proposal

• Make blk-mq multipath aware
– Removes stacking/re-entry requirement

– More efficient use of resources

– Tighter integration to h/w

• Ideas initiated by Hannes Reinecke and
Christoph Hellwig

• Implementation and collaboration details
ongoing
– PoC expected within weeks

Thank you

keith.busch@intel.com

Backup

Path selection code snippet
static struct dm_path *numa_select_path(struct path_selector *ps,

 unsigned *repeat_count, size_t nr_bytes)

{

 struct selector *s = (struct selector *) ps->context;

 struct path_info *best = NULL, *pi;

 int cur = INT_MAX, node = cpu_to_node(smp_processor_id());

 list_for_each_entry(pi, &s->valid_paths, list) {

 int pnode = pi->path->dev->bdev->bd_queue->node;

 int val = node_distance(node, pnode);

 if (val < cur) {

 best = pi;

 cur = val;

 }

 }

 *repeat_count = 1;

 return best ? best->path : NULL;

}

