
Geo replication and disaster
recovery for cloud object
storage with Ceph rados
gateway

Orit Wasserman
Senior Software engineer
owasserm@redhat.com
Linuxcon EU 2016

AGENDA

• What is Ceph?

• Rados Gateway (radosgw) architecture

• Geo replication in radosgw

• Questions

Ceph architecture

Cephalopod

A cephalopod is any member of
the molluscan class
Cephalopoda. These exclusively
marine animals are
characterized by bilateral body
symmetry, a prominent head,
and a set of arms or tentacles
(muscular hydrostats) modified
from the primitive molluscan
foot. The study of cephalopods
is a branch of malacology known
as teuthology.

Ceph

Ceph

• Open source

• Software defined storage

• Distributed

• No single point of failure

• Massively scalable

• Self healing

• Unified storage: object, block and file

• IRC: OFTC #ceph,#ceph-devel

• Mailing lists:
• ceph-users@ceph.com

• ceph-devel@ceph.com

Ceph architecture

RGW
A web services

gateway for object
storage, compatible

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block
device with cloud

platform integration

CEPHFS
A distributed file

system with POSIX
semantics and scale-

out metadata
management

APP HOST/VM CLIENT

Rados

• Reliable Distributed Object Storage

• Replication

• Erasure coding

• Flat object namespace within each pool
• Different placement rules

• Strong consistency (CP system)

• Infrastructure aware, dynamic topology

• Hash-based placement (CRUSH)

• Direct client to server data path

OSD node

• 10s to 10000s in a cluster

• One per disk (or one per
SSD, RAID group…)

• Serve stored objects to
clients

• Intelligently peer for
replication & recovery

Monitor node

• Maintain cluster membership
and state

• Provide consensus for
distributed decision-making

• Small, odd number

• These do not serve stored
objects to clients

object placement

pool

placement group (PG)

hash(object name) % num_pg = pg

CRUSH(pg, cluster state, rule) = [A, B]

Crush
• pseudo-random placement algorithm

• fast calculation, no lookup

• repeatable, deterministic

• statistically uniform distribution

• stable mapping
• limited data migration on change

• rule-based configuration
• infrastructure topology aware

• adjustable replication

• allows weighting

Librados API

• Efficient key/value storage inside an object

• Atomic single-object transactions
• update data, attr, keys together

• atomic compare-and-swap

• Object-granularity snapshot infrastructure

• Partial overwrite of existing data

• Single-object compound atomic operations

• RADOS classes (stored procedures)

• Watch/Notify on an object

Rados Gateway

Rados Gateway

RGW
A web services

gateway for object
storage, compatible

with S3 and Swift

LIBRADOS
A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby, PHP)

RADOS
A software-based, reliable, autonomous, distributed object store comprised of
self-healing, self-managing, intelligent storage nodes and lightweight monitors

RBD
A reliable, fully-
distributed block
device with cloud

platform integration

CEPHFS
A distributed file

system with POSIX
semantics and scale-

out metadata
management

APP HOST/VM CLIENT

M M

M

RADOS CLUSTER

RADOSGW
LIBRADOS

socket

RADOSGW
LIBRADOS

APPLICATION APPLICATION

REST

Rados Gateway

RESTful OBJECT STORAGE

• Data
• Users

• Buckets

• Objects

• ACLs

• Authentication

• APIs
• S3

• Swift

• Librgw (used for
NFS)

RADOSGW
LIBRADOS

APPLICATION

S3 REST

APPLICATION

SWIFT REST

RADOS CLUSTER

RGW vs RADOS object

• RADOS
• Limited object sizes

• Mutable objects

• Not indexed

• No per-object ACLs

• RGW
• Large objects (Up to a few TB per object)

• Immutable objects

• Sorted bucket listing

• Permissions

RGW objects requirements

• Large objects

• Fast small object access

• Fast access to object attributes

• Buckets can consist of a very large number of objects

RGW objects

HEAD TAIL

OBJECT

• Head
• Single rados object

• Object metadata (acls, user attributes, manifest)

• Optional start of data

• Tail
• Striped data

• 0 or more rados objects

RGW Objects

OBJECT: foo

123_foo

BUCKET: boo

BUCKET ID: 123

123_28faPd3Z.1

123_28faPd3Z.2

123_28faPd.1

headheadhead

tail 1

tail 1

RGW bucket index

aaa

abc

def (v2)

zzz

BUCKET INDEX

def (v1)

Shard 1

aab

bbb

eee

zzz

fff

Shard 2

RGW object creation

• When creating a new object we need to:
• Update bucket index

• Create head object

• Create tail objects

• All those operations need to be consist

RGW object creation

aab

bbb

eee

zzz

fff (prepare)

aab

bbb

eee

zzz

fff

prepare

complete

Write head

HEAD

TAIL

Write tail

RGW metadata cache

M M

M

RADOS CLUSTER

RADOSGW
LIBRADOS

LIBRADOS
RADOSGW

LIBRADOS

LIBRADOS
RADOSGW

LIBRADOS

notify notification

notification

Geo replication

Geo replication

• Data is replicated on different physical locations

• High and unpredictable latency between those location

• Used for disaster recovery

Geo replication

aus

singapore

us-east

us-west

europe

brazil

brazil

us-west

us-east
us-west

us-east

europe

primary

dr backup
singapore

aus

singapore

aus

Sync agent (old implementation)

CEPH OBJECT
GATEWAY

(RGW)

CEPH STORAGE
CLUSTER

(US-EAST-1)

CEPH OBJECT
GATEWAY

(RGW)

CEPH STORAGE
CLUSTER

(US-EAST-2)

SYNC AGENT

Sync agent (old implementation)

• External python implementation

• No Active/Active support

• Hard to configure

• Complicate failover mechanism

• No clear sync status indication

• A single bucket synchronization could dominate the entire sync
process

• Configuration updates require restart of the gateways

New implementation

• part of the radosgw (written in c++)

• Active/active support for data replication

• Simpler configuration

• Simplify failover/failback

• Dynamic reconfiguration

• Backward compatibility with the sync agent

Multisite configuration

• Realm
• Namespace

• contains the multisite configuration and status

• Allows running different configurations in the same cluster

• Zonegroup
• Group of zones

• Used to be called region in old multisite

• Each realm has a single master zonegroup

• Zone
• One or more Radosgw instances all running on the same Rados

cluster

• Each zonegroup has a single master zone

Multisite environment example

RADOSGW

CEPH STORAGE
CLUSTER

(US-EAST)

RADOSGW

CEPH STORAGE
CLUSTER

(EU-WEST)

RADOSGW

CEPH STORAGE
CLUSTER

(US-WEST)

ZoneGroup: us (master)
Zone: us-east (master)

ZoneGroup: eu (secondary)
Zone: eu-west (master)

Zonegroup: us (master)
Zone: us-west (secondary)

Realm: Gold

Configuration change

• Period:
• Each period has a unique id

• Contains: realm configuration, an epoch and it's predecessor period
id (except for the first period)

• Every realm has an associated current period and a
chronological list of periods

• Git like mechanism:
• User configuration changes are stored locally

• Configuration updated are stored in a stagging period (using
radosgw-admin period update command)

• Changes are applied only when the period is commited (using
radosgw-admin period commit command)

• Each zone can pull the period information (using radosgw-
admin period pull command)

Configuration change – new
master zone

• Period commit will results in the following actions:
• A new period is generated with a new period id and epoch of 1

• Realm's current period is updated to point to the newly generated
period id

• Realm's epoch is incremented

• New period is pushed to all other zones by the new master

• We use watch/notify on the realm rados object to detect
changes and apply them on the local radosgw

Configuration change

• Period commit will only increment the period epoch.

• The new period information will be pushed to all other zones

• We use watch/notify on the realm rados object to detect
changes on the local radosgw

Sync process

• Metadata changes:
• Bucket ops (Create, Delete and enable/disable versioning)

• Users ops

• Metadata changes have wide system effect

• Metadata changes are rare

• Data changes: all objects updates

• Data changes are frequent

Metadata sync

• Metadata changes are replicated synchronously across the
realm

• Each realm has a single meta master, the master zone in the
master zonegroup

• Only the meta master can executes metadata changes

• Separate log for metadata changes

• Each Ceph cluster has a local copy of the metadata log

• If the meta master is down the user cannot perform metadata
updates till a new meta master is assigned

Metadata sync

• updates to metadata originating from a different zone:
• forwarded request to the meta master

• update the metadata log

• meta master perform the change

• meta master pushes metadata updates to all the other zones

• Each zone will pull the updated metadata log and apply changes
locally

• All zones check periodically for metadata changes

Data sync

• Data changes are handled locally and replicated
asynchronously (eventual consistency)

• Default is Active/Active sync

• User can configure a zone to be read only for Active/Passive

• We first complete a full sync and than continue doing an
incremental sync

• Each bucket instance within each zone has a unique
incremented version id that is used to keep track of changes on
that specific bucket.

Data sync

• Data sync run periodically

• Init phase: fetch the list of all the bucket instances

• Sync Phase:
• for each bucket

• If bucket does not exist, fetch bucket and bucket instance
metadata from meta master zone. Create new bucket

• Sync bucket

• Check to see if need to send updates to other zones

• Incremental sync keeps a bucket index position to continue
from

Sync status

• Each zone keeps the metadata sync state against the meta
master

• Each zone keeps the data sync state where it is synced with
regard to all its peers

Sync status command

realm f94ab897-4c8e-4654-a699-f72dfd4774df (gold)
 zonegroup 9bcecc3c-0334-4163-8fbb-5b8db0371b39 (us)
 zone 153a268f-dd61-4465-819c-e5b04ec4e701 (us-west)
 metadata sync syncing
 full sync: 0/64 shards
 metadata is caught up with master
 incremental sync: 64/64 shards
 data sync source: 018cad1e-ab7d-4553-acc4-de402cfddd19 (us-east)
 syncing
 full sync: 0/128 shards
 incremental sync: 128/128 shards
 data is caught up with source

realm f94ab897-4c8e-4654-a699-f72dfd4774df (gold)
 zonegroup 9bcecc3c-0334-4163-8fbb-5b8db0371b39 (us)
 zone 153a268f-dd61-4465-819c-e5b04ec4e701 (us-west)
 metadata sync syncing
 full sync: 0/64 shards
 metadata is caught up with master
 incremental sync: 64/64 shards
 data sync source: 018cad1e-ab7d-4553-acc4-de402cfddd19 (us-east)
 syncing
 full sync: 0/128 shards
 incremental sync: 128/128 shards
 data is caught up with source

radosgw-admin sync statusradosgw-admin sync status

A little bit of the Implementation
• We use co-routines for asynchronous execution based on

boost::asio::coroutine with our own stack class.

• See code here:
https://github.com/ceph/ceph/blob/master/src/rgw/rgw_coroutin
e.h

• We use leases for locking

What's next

WHAT'S NEXT
• Log trimming – clean old logs

• Sync modules – framework that allows forwarding data (and
metadata) to external tiers. This will allow external metadata
search (via elasticsearch)

THANK YOU!

Email: owasserm@redhat.com

IRC: owasserm OFTC #ceph,
#ceph-devel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

