
Linus Walleij, Embedded Linux Conference, San Jose

Fear and Loathing in the Media
Transfer Protocol

- A superset of Picture Transfer Protocol, ISO 15740
- A transactional file system that reminds you of FTP - the
device always “owns” the underlying file system, no
random access

- Dropped transfers (read: unplugged USB cable) does
not corrupt the device file system

- Completely binary
- Determined size of transactions- does not allow
streaming to file of unknown final size

- Fine-grained semantics defined by behaviour of
Windows MTP daemon akin to how SAMBA is
developed to mimic Windows SMB daemon

What is the Media Transfer Protocol?

- Userspace library in turn based on libusb (and udev) -
today I would probably write parts of it in the kernel

- The host side “initiator” implementation of MTP used in
all Linux and MacOS programs talking to MTP devices,
notably GNOME VFS MTP backend and KDE kio-mtp
backend for desktops

- Based on the libgphoto2 generic camera library ptp2,
part of gPhoto, and maintained as a “synchronized fork”
in cooperation with libgphoto2 maintainer Markus
Meissner

- Began in january 2006 as Creative Labs moved from
custom protocol (libnjb) to MTP as part of the Portable
Media Center push from Microsoft in 2004

What is libmtp?

MTP Was Introduced with the PMCs

Apple competitor product family marketed with “PlaysForSure” WMDRM (compare
FairPlay) ideas in 2004.
Source: Wikimedia Commons

https://commons.wikimedia.org/wiki/File:Creative_Zen_Portable_Media_Center.jpg

lsusb -v

Bus 001 Device 006: ID 0b05:4cd0 ASUSTek Computer, Inc.

(...)

Device Descriptor:

(...)

 bDeviceClass 0 (Defined at Interface level)

(...)

 Configuration Descriptor:

(...)

Interface Descriptor:

(...)

 bNumEndpoints 3

 bInterfaceClass 255 Vendor Specific Class

 bInterfaceSubClass 255 Vendor Specific Subclass

 bInterfaceProtocol 0

 iInterface 4 MTP

Low Level USB Interface
Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x81 EP 1 IN

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0200 1x 512 bytes

 bInterval 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x02 EP 2 OUT

 bmAttributes 2

 Transfer Type Bulk

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x0200 1x 512 bytes

 bInterval 0

 Endpoint Descriptor:

 bLength 7

 bDescriptorType 5

 bEndpointAddress 0x82 EP 2 IN

 bmAttributes 3

 Transfer Type Interrupt

 Synch Type None

 Usage Type Data

 wMaxPacketSize 0x001c 1x 28 bytes

 bInterval 6

- According to the spec, MTP should be use the PTP
device class (0x06) with Interface subclass 0x01

- Yet nobody does, let me guess: Windows does not
support this

- Instead you must:
(1) attempt to get device descriptor 0xEE, if this contains
the magic letters “MSFT” you send

(2) a special control message which then returns another
set of magic bytes containing the string “MTP” and then

(3) a second control message which usually return the
same thing again

- If any of these mismatch, the device is not MTP

OS Descriptor

Microsoft device descriptor 0xee:

 0000: 1203 4d00 5300 4600 5400 3100 3000 3000 ..M.S.F.T.1.0.0.

 0010: 3000 0.

Microsoft device response to control message 1, CMD 0x30:

 0000: 2800 0000 0001 0400 0100 0000 0000 0000 (...............

 0010: 0001 4d54 5000 0000 0000 0000 0000 0000 ..MTP...........

 0020: 0000 0000 0000 0000

Microsoft device response to control message 2, CMD 0x30:

 0000: 2800 0000 0001 0400 0100 0000 0000 0000 (...............

 0010: 0001 4d54 5000 0000 0000 0000 0000 0000 ..MTP...........

 0020: 0000 0000 0000 0000

OS Descriptor

- PTP/MTP can open a session with the device
- During the session data is sent and retrieved
- Basic device info can be retrieved, like serial number or
battery level

- A number of operations can be performed on the
device, like enumerating storages, most importantly
getting and sending objects

- It is possible to ask the device what objects it supports
and what kind of metadata can be tagged onto objects

- Events can be triggered from the device, such as for a
new object being added on the device when it is plugged
into a host

PTP/MTP basics

Objects, 1st generation devices

- PTP and MTP deal with objects, not files. These have a
unique 32bit unsigned ID

- Each object has a unique type object format code, a
16bit unsigned number, could be MP3 (0x3009), MPEG
(0x300b) etc akin to MIME types

- Each object then has a set of associated metadata
called object properties

- Metadata is the usual stuff like modification date and
name, metadata exist for things like artist and album
name, composer, genre, duration, … can be strings,
u64, u32, u16, u8 or arrays of unsigned - and numbers
can be restricted to enumerators

Message Format

- You can actually ask the device what properties are
supported for a certain object type (operation 0x9801,
GetObjectPropsSupported)

- Accelerated operations to send or retrieve object
properties as a big binary list instead of one-by-one
(GetObjPropList, SetObjPropList, SendObjPropList)

- Operations to get and set object references for playlists
and albums (or any other abstract list)

- Then a lot of weird WMDRM commands that nobody
uses and even weirder commands for the Zune and
early Windows Phone DRM (not really part of the spec)

What is then MTP-specific actually?

Device info:

 Manufacturer: Samsung Electronics Co., Ltd.

 Model: Samsung Wave(GT-S8500)

 Device version: S8500XXJF1

 Serial number: 35922303026479

 Vendor extension ID: 0x00000006

 Vendor extension description: microsoft.com: 1.0;
microsoft.com/WMPPD: 11.0; microsoft.com/WMDRMPD: 10.1;
Microsoft.com/DeviceServices:1.0;

 Detected object size: 64 bits

Supported operations:

 1001: get device info

 1002: Open session

 1003: Close session

 1004: Get storage IDs

 1005: Get storage info

 1006: Get number of objects

 1007: Get object handles

(...)

Events supported:

 0x4001

 0x4004

(...)

Device Properties Supported:

 0x5001: Battery Level

 0xd401: Synchronization Partner

 0xd402: Friendly Device Name

(...)

Example of what the devices say
Playable File (Object) Types and Object Properties Supported:

(...)

 3009: MP3

 dc01: Storage ID UINT32 data type ANY 32BIT VALUE form READ
ONLY

 dc02: Object Format UINT16 data type ANY 16BIT VALUE form
READ ONLY

 dc03: Protection Status UINT16 data type enumeration: 0, 1,
32770, 32771, READ ONLY

 dc04: Object Size UINT64 data type READ ONLY

 dc07: Object File Name STRING data type REGULAR EXPRESSION
FORM GET/SET

 dc0b: Parent Object UINT32 data type ANY 32BIT VALUE form
READ ONLY

 dc41: Persistant Unique Object Identifier UINT128 data type
READ ONLY

(...)

 dc46: Artist STRING data type GET/SET

 dc89: Duration UINT32 data type range: MIN 0, MAX -1, STEP 1
GET/SET

dc8b: Track UINT16 data type ANY 16BIT VALUE form GET/SET

 dc8c: Genre STRING data type GET/SET

 dc97: Effective Rating UINT16 data type range: MIN 0, MAX
100, STEP 1 GET/SET

 dc99: Original Release Date STRING data type DATETIME FORM
GET/SET

- The file representation was initially flat, without any
folder hierarchy. Early MP3 players just have a crude
filesystem for everything, and an object and metadata
database (file system + BerkeleyDB on an RTOS
typically)

- Folders and similar are then implemented on top of the
object storage through abstract entities: association
objects which may be a “generic folder”, albums and
playlists

- All of these things are just lists of 32bit unsigned words
indicating associated object IDs

Objects, tagged with metadata

- LIBMTP_Get_Filelisting() - returns a list of everything in
the database on all storages, then you have to build a
view of it in memory

- Accessors to send and retrieve files, also send tracks
(audio or other multimedia) and tag them with metadata

- LIBMTP_Get_Folder_List() - a separate API for dealing
with folders as abstract objects - so that clients didn’t
necessary had to implement hierarchy awareness

- LIBMTP_Get_Playlist_List() and
LIBMTP_Get_Album_List() to globally handle abstract
objects of these types - makes a lot of sense

First generation object access API

- It’s a straight forward protocol specification, maintained
by the USB Implementers Forum, so just implement it
and be happy right?

- We actually started libmtp before the spec was even
conceived, and it was a Microsoft proprietary protocol.

- It was based on USB low-level protocol sniffing, as we
did not agree to the license MS used for the specification
(which was however available)

- When the open spec came out we already had all of it
implemented

- But there is no conformance test suite … all devices are
tested against Windows and Windows only

How Hard Can it Be?

- We register USB VID+PID tuples, and assign quirk flags
- For device side implementations that we can identify or
detect (such as Android), quirks can be added
automatically and VID+PID registry is not necessary

- Yet we try to stash our database with every new device
that comes out

- The database is also used to generate the udev script
that tells userspace that an MTP device was plugged in

- And we have a real nasty binary to autoprobe devices
with certain characteristics that indicate they may be
MTP devices called “mtp-probe”

Dealing with Device Quirks

- With Android, devices started to use a new access
pattern exercising the object associations to mimic a
hierarchical file system

- The device was queried in the style of asking for all
associations of type folder in the root, then advancing
through the hierarchy by asking for folders below
another folder etc, which is perfect for GUI VFS
representation like GNOME VFS, KDE KIO or Windows
File Explorer

- This is divergent to how elder devices are ideally
accessed

- Now a proper filesystem is always the backing storage

Enter Android: No Flatfile Database

- Implemented by Google for the MacOS Android file
transfer client

- LIBMTP_Get_Files_And_Folders(storage, parent) -
access a certain storage and get one level of object
information below a parent folder (or root) on that
storage

- Old API used for creating folders and sending files and
tracks below that hierarchy since these APIs already
support specifying storage and parents

- The playlist and album management APIs are often
unused, devices will often just ignore attempts to create
abstract lists and use custom files for this

Second generation object access API

- Devices bug out or ignore the request to close a session
due to only being tested with Windows - windows hog
the device and wait for you to unplug the USB cable.
This can be avoided by testing with libmtp!

- Assuming the host will hog the device immediately
make some devices go numb unless accessed in MTP
mode within 7 seconds from plug-in

- Devices announce capabilities thay crash if you try to
use them, such as getting the device certificate on a lot
of Android phones that does not really support Windows
DRM (Janus)

Device Sins 1

- Newer devices really does not support the old access
pattern of dumping out the whole database from the
storage, this is part of the spec but seldom tested

- Using the same VID+PID for several interface modes:
some which aren’t MTP. HTC Zopo, HD2, Bird
(0xbb4/0x0c02) - then we just can’t detect the applicable
protocol from VID+PID but have to inspect interfaces
and endpoints

- Samsung’s MTP stack accepts and discards all
metadata sent and instead parses ID3 tags and other
embedded metadata from the files and is thus only
dealing with files

Device Sins 2

- Aricent MTP stack used in earlier SonyEricsson Android
devices would generate broken headers (operation code
and Transaction ID came back damaged) something
that is a bug but was tolerated by the Windows MTP
stack and thus not detected

- ...and some other minor bug flags, like the device
needing to be reset during initialization to properly
connect

Device Sins 3

- Android’s MTP stack was included in Ice Cream
Sanwich 4.0.x

- It announces that it does support MTP accelerated
commands Get/Set/Send ObjectPropList but fail so to
handle them so we have to detect Android and fall back
to generic PTP handling (presumably because this is
what Windows does with devices it does not know
about, and they have a whitelist of devices to use it on)

- At the same time Android implements two new
commands for random access in files/objects:
GetPartialObject, SendPartialObject, BeginEditObject,
EndEditObject, and TruncateObject. GVFS will exploit
these commands for random access

Android’s MTP Stack

https://android.googlesource.com/platform/frameworks/base/+/master/media/jni/

- MTP contains playback commands for remote control of
devices, we have only ever seen two devices that
actually say they implement that: Trekstor Vibez and
Nokia 808

- Windows WMDRM (Janus) was used by early devices,
certificates, secure time etc are compulsary to claim to
support but Android devices just disregard it

- ZUNE came and went, the authentication scheme was
reverse engineered by a libmtp developer but depended
on external keys to perform, and those need be provided
by Microsoft

- Microsoft silently dropped the ZUNE authentication
features from the Windows Phone product line

Esoteric Features

- Get libmtp 1.1.7 out the door
- Clean out the bug database
- Apply patches
- Deprecate the old API for 1.2.0 and remove in 1.3.0?

Next Steps

- I have been the main maintainer of libmtp even though it
is used by many, many frontends
- I need to go over many many bug and device reports
and get libmtp 1.1.7 out the door
- We need more people in this project, familiar with MTP
devices, libmtp and git
- I spend most of my time in the Linux kernel these days
- Questions?

Help us writing libmtp!

More about Linaro Connect: http://connect.linaro.org
More about Linaro: http://www.linaro.org/about/

More about Linaro engineering: http://www.linaro.org/engineering/
Linaro members: www.linaro.org/members

http://www.linaro.org/about/
http://www.linaro.org/about/
http://www.linaro.org/engineering/
http://www.linaro.org/members

