
Netflix:
Integrating Spark
At Petabyte Scale

Ashwin Shankar
Cheolsoo Park

Outline

1.  Netflix big data platform
2.  Spark @ Netflix
3.  Multi-tenancy problems
4.  Predicate pushdown
5.  S3 file listing
6.  S3 insert overwrite
7.  Zeppelin, Ipython notebooks
8.  Use case (Pig vs. Spark)

Netflix
Big Data Platform

Netflix data pipeline

Cloud
Apps

S3

Suro/Kafka Ursula

SSTablesCassandra Aegisthus

Event Data

500 bn/day, 15m

Daily

Dimension Data

Netflix big data platform

Data
Warehouse

Service

Tools

Gateways

Prod

Clients

Clusters

Adhoc Prod TestTest

Big Data API/Portal

Metacat

Prod

Our use cases

•  Batch jobs (Pig, Hive)
•  ETL jobs
•  Reporting and other analysis

•  Interactive jobs (Presto)
•  Iterative ML jobs (Spark)

Spark @ Netflix

Mix of deployments

•  Spark on Mesos
•  Self-serving AMI
•  Full BDAS (Berkeley Data Analytics Stack)
•  Online streaming analytics

•  Spark on YARN
•  Spark as a service
•  YARN application on EMR Hadoop
•  Offline batch analytics

Spark on YARN

•  Multi-tenant cluster in AWS cloud
•  Hosting MR, Spark, Druid

•  EMR Hadoop 2.4 (AMI 3.9.0)
•  D2.4xlarge ec2 instance type
•  1000+ nodes (100TB+ total memory)

Deployment

S3 s3://bucket/spark/1.5/spark-1.5.tgz, spark-defaults.conf (spark.yarn.jar=1440443677)

s3://bucket/spark/1.4/spark-1.4.tgz, spark-defaults.conf (spark.yarn.jar=1440304023)

/spark/1.5/1440443677/spark-assembly.jar
/spark/1.5/1440720326/spark-assembly.jar

/spark/1.4/1440304023/spark-assembly.jar
/spark/1.4/1440989711/spark-assembly.jar

name: spark
version: 1.5
tags: ['type:spark', 'ver:1.5']
jars:
 - 's3://bucket/spark/1.5/spark-1.5.tgz’

Download latest tarball
From S3 via Genie

Advantages

1. Automate deployment.
2. Support multiple versions.
3. Deploy new code in 15 minutes.
4. Roll back bad code in less than a minute.

Multi-tenancy
Problems

Dynamic allocation

Courtesy of “Dynamic allocate cluster resources to your Spark application” at Hadoop Summit 2015

Dynamic allocation
// spark-defaults.conf
spark.dynamicAllocation.enabled true
spark.dynamicAllocation.executorIdleTimeout 5
spark.dynamicAllocation.initialExecutors 3
spark.dynamicAllocation.maxExecutors 500
spark.dynamicAllocation.minExecutors 3
spark.dynamicAllocation.schedulerBacklogTimeout 5
spark.dynamicAllocation.sustainedSchedulerBacklogTimeout 5
spark.dynamicAllocation.cachedExecutorIdleTimeout 900

// yarn-site.xml
yarn.nodemanager.aux-services

•  spark_shuffle, mapreduce_shuffle
yarn.nodemanager.aux-services.spark_shuffle.class

•  org.apache.spark.network.yarn.YarnShuffleService

Problem 1: SPARK-6954

“Attempt to request a negative number of executors”

SPARK-6954

Problem 2: SPARK-7955

“Cached data lost”

SPARK-7955

val data = sqlContext
 .table("dse.admin_genie_job_d”)
 .filter($"dateint">=20150601 and $"dateint"<=20150830)
data.persist
data.count

Problem 3: SPARK-7451, SPARK-8167

“Job failed due to preemption”

SPARK-7451, SPARK-8167

•  Symptom
•  Spark executors/tasks randomly fail causing job failures.

•  Cause
•  Preempted executors/tasks are counted as failures.

•  Solution
•  Preempted executors/tasks should be considered as killed.

Problem 4: YARN-2730

“Spark causes MapReduce jobs to get stuck”

YARN-2730

•  Symptom
•  MR jobs get timed out during localization when running with Spark jobs

 on the same cluster.

•  Cause
•  NM localizes one job at a time. Since Spark runtime jar is big, localizing

Spark jobs may take long, blocking MR jobs.

•  Solution
•  Stage Spark runtime jar on HDFS with high repliacation.

•  Make NM localize multiple jobs concurrently.

Predicate
Pushdown

Predicate pushdown

Case Behavior

Predicates with partition cols on partitioned table Single partition scan

Predicates with partition and non-partition cols on
partitioned table

Single partition scan

No predicate on partitioned table
e.g. sqlContext.table(“nccp_log”).take(10)

Full scan

No predicate on non-partitioned table Single partition scan

Predicate pushdown for metadata

Analyzer

Optimizer

SparkPlanner

Parser

HiveMetastoreCatalog

getAllPartitions()

ResolveRelation

What if your table has 1.6M partitions?

SPARK-6910

•  Symptom
•  Querying against heavily partitioned Hive table is slow.

•  Cause
•  Predicates are not pushed down into Hive metastore, so Spark does full

scan for table metadata.

•  Solution
•  Push down binary comparison expressions via getPartitionsByfilter() in

to Hive metastore.

Predicate pushdown for metadata

Analyzer

Optimizer

SparkPlanner

Parser

HiveTableScan

getPartitionsByFilter()

HiveTableScans

S3
File Listing

Input split computation

•  mapreduce.input.fileinputformat.list-status.num-threads
•  The number of threads to use list and fetch block locations for the specifi

ed input paths.

•  Setting this property in Spark jobs doesn’t help.

File listing for partitioned table

Partition path

Seq[RDD]

HadoopRDD

HadoopRDD

HadoopRDD

HadoopRDD

Partition path

Partition path

Partition path

Input dir

Input dir

Input dir

Input dir

Sequentially listing input dirs via S3N file system.

S3N

S3N

S3N

S3N

SPARK-9926, SPARK-10340

•  Symptom
•  Input split computation for partitioned Hive table on S3 is slow.

•  Cause
•  Listing files on a per partition basis is slow.

•  S3N file system computes data locality hints.

•  Solution
•  Bulk list partitions in parallel using AmazonS3Client.

•  Bypass data locality computation for S3 objects.

S3 bulk listing

Partition path

ParArray[RDD]

HadoopRDD

HadoopRDD

HadoopRDD

HadoopRDD

Partition path

Partition path

Partition path

Input dir

Input dir

Input dir

Input dir

Bulk listing input dirs in parallel via AmazonS3Client.

Amazon
S3Client

Performance improvement

0
2000
4000
6000
8000

10000
12000
14000
16000

1 24 240 720

se
co

nd
s

of partitions

1.5 RC2
S3 bulk listing

SELECT * FROM nccp_log WHERE dateint=20150801 and hour=0 LIMIT 10;

S3
Insert Overwrite

Problem 1: Hadoop output committer

•  How it works:
•  Each task writes output to a temp dir.
•  Output committer renames first successful task’s temp dir to

final destination.

•  Problems with S3:
•  S3 rename is copy and delete.
•  S3 is eventual consistent.
•  FileNotFoundException during “rename.”

S3 output committer

•  How it works:
•  Each task writes output to local disk.
•  Output committer copies first successful task’s output to S3.

•  Advantages:
•  Avoid redanant S3 copy.
•  Avoid eventual consistency.

Problem 2: Hive insert overwrite

•  How it works:
•  Delete and rewrite existing output in partitions.

•  Problems with S3:
•  S3 is eventual consistent.
•  FileAlreadyExistException during “rewrite.”

Batchid pattern

•  How it works:
•  Never delete existing output in partitions.
•  Each job inserts a unique subpartition called “batchid.”

•  Advantages:
•  Avoid eventual consistency.

Zeppelin
Ipython
Notebooks

Big data portal

•  One stop shop for all big data related tools and services.
•  Built on top of Big Data API.

Out of box examples

•  Zero installation
•  Dependency management via Docker

•  Notebook persistence
•  Elastic resources

On demand notebooks

Quick facts about Titan
•  Task execution platform leveraging Apache Mesos.
•  Manages underlying EC2 instances.
•  Process supervision and uptime in the face of failures.
•  Auto scaling.

Notebook Infrastructure

Ephemeral ports / --net=host mode

Zeppelin
Docker
Container A
172.X.X.X

Host machine A
54.X.X.X

Host machine B
54.X.X.X

Pyspark
Docker
Container B
172.X.X.X

Titan cluster YARN cluster

Spark AM

Spark AM

Use Case
Pig vs. Spark

Iterative job

Iterative job

1. Duplicate data and aggregate them differently.

2. Merging aggregates back.

Performance improvement

0:00:00
0:14:24
0:28:48
0:43:12
0:57:36
1:12:00
1:26:24
1:40:48
1:55:12
2:09:36

job 1 job 2 job 3

hh
:m

m
:s

s

Pig
Spark 1.2

Our contributions

SPARK-6018

SPARK-6662

SPARK-6909

SPARK-6910

SPARK-7037

SPARK-7451

SPARK-7850

SPARK-8355

SPARK-8572

SPARK-8908

SPARK-9270

SPARK-9926

SPARK-10001

SPARK-10340

Q&A

Thank You

