
Noah
Hypervisor-Based Darwin Subsystem for Linux

Takaya Saeki, Yuichi Nishiwaki

Self Introduction
Noah Development Team

Takaya Saeki Yuichi Nishiwaki

They both are graduate students at the University of
Tokyo. They are developing Noah in their free time.
Noah was selected one of MITOH projects, which is a
financial assistance program by the government of Japan
for outstanding young programmers

Noah
• A middleware that runs  

unmodified Linux ELF applications on macOS

• Reduce cost of creating / waiting for mac OS port of
Linux apps

• Accomplish it by special hypervisor. Load ELF
binary into VM and let it run instead of kernel, trap
system calls from it by hypervisor, and translate
them to corresponding system calls on macOS.

Noah
• A middleware that runs  

unmodified Linux ELF applications on macOS

• Reduce cost of creating / waiting for mac OS port of
Linux apps

• Accomplish it by special hypervisor. Load ELF
binary into VM and let it run instead of kernel, trap
system calls from it by hypervisor, and translate
them to corresponding system calls on macOS.

We discuss the architecture in detail later!

Short Demo;  
What it looks like

Agenda
• What is Noah (Done!)

• Background

• Noah in Detail

• Architecture Overview

• Advantages of Noah Architecture

• Subsystem Implementation

• Memory management, VFS, and the other

• Current Implementation Status and Performance

• Related Technologies and Comparison  
(Windows Subsystem for Linux, Linuxulator, and so on)

• Their Possible Impact on Cross Platform Development

Background

Linux

• One of the most important operating systems today

• Most popular OS for WEB servers

• Many apps and middleware come from the Linux
ecosystem, and they are ported to other operating
systems for developers

Problem: Porting cost
Later..

Porting cost
• Many Linux applications are ported to macOS,

FreeBSD, and Windows…

• But it takes time and effort!

• Windows decided to have Linux compatibility layer
called “Windows Subsystem for Linux” in 2016 to
benefit from the Linux ecosystem directly

• FreeBSD also already has Linux compatibility layer

• macOS does not have Linux
compatibility layer yet despite its
large number of developers

• Noah fills the missing piece!

If major operating systems have Linux
compatibility, developers don’t have to port Linux

applications nor wait for them to be ported

Architecture Overview  
of Noah

Architecture Overview
Noah’s architecture consists of three components

1. VT-x Virtual Machines

They have NO kernel inside it, but directly boot an ELF binary and let it run instead.

2. Host Noah Processes

Processes that run on the host OS, which actually work as Linux compatibility layer

3. Virtual Machine Monitor module (VMM).

Actually, not a part of Noah itself, but a kernel API of the host OS for virtualization. Apple
Hypervisor Framework in macOS, KVM in Linux, for example.

Architecture Overview
1. Host Noah process

launches a new VM and
loads ELF inside it by ELF
loader implemented in the
host Noah process

2. The VM runs ELF in its
virtualized userland

3. The ELF application fires
Linux system calls when
running

4. VMM module traps the
system call and passes it
to the host Noah process

5. Host Noah process
emulates the behavior of
Linux system call by host
OS’s system calls

Architecture Overview

A pair of host Noah process and VM corresponds to a
Linux application. So, when there are multiple Linux
applications, there are also multiple pairs of host Noah
process and VM.

$ noah /bin/hello

Noah

macOS

hello glibc

6

6

write(1, “hello”, 6)

Example1: How “Hello, world” works

stack area

$ cat file | grep 2017

Noah

macOS

bash

Noah

Noah forks!

Example2: Interaction between processes

Example2: Interaction between processes

$ cat file | grep 2017

Noah

macOS

bash

Noah

bash

Clone the VM state

$ cat file | grep 2017

Noah

macOS

bash

Noah

cat exec!

Example2: Interaction between processes

$ cat file | grep 2017

Noah

macOS

bash

Noah

cat

Noah

grep

Example2: Interaction between processes

$ cat file | grep 2017

Noah

macOS

bash

Noah

cat

Noah

grep

Example2: Interaction between processes

Example2: Interaction between processes

$ cat file | grep 2017

Noah

macOS

bash

Noah

cat

Mac App

Linux and macOS
applications can also

communicate
naturally

Advantages of Noah
Architecture

Unique Characteristics
1. All syscall translation done in user land instead of
kernel land

• Still, any sensitive events are trappable with VT-x

2. Launch as many VMs as virtual Linux processes

• No kernel running inside VMs

3. Virtualization is per syscall, not per device I/O

• No care about hardware device emulation

Advantages of Noah
Architecture

1. Robustness

Bugs in Noah never cause kernel panic because Noah is just an ordinary
userland program (let’s google “WSL bluescreen” now).

2. Portability

The architecture is independent from host OS’s architecture. Syscall calling
convention, memory layout, page fault handling rules, …etc are all
configurable.

3. Smooth interaction with host OS

Linux process runs as if it is the host OS’s process. Resources such as
memory, network, and so on are managed by host OS. No need to worry
about the amount of virtual memory allocation like full virtual machines.

Agenda
• What is Noah

• Background

• Noah in Detail

• Architecture Overview

• Advantages of Noah Architecture

• Subsystem Implementation

• Memory management, VFS, and the other

• Current Implementation Status and Performance

• Related Technologies and Comparison  
(Windows Subsystem for Linux, Linuxulator, and so on)

• Their Possible Impact on Cross Platform Development

Subsystem Implementation

Noah Subsystems

Noah consists of subsystems such as memory
management, IPC, or file system just like a real
kernel. 
 
Some of them have some difficulty because of the
nature of Noah’s architecture.

Noah Subsystems

Today we explain two subsystems in detail.

1. Memory management

2. Virtual file system

Memory Management

Memory Management

• Since Linux ELF binary runs inside VM, Noah must
manage address translation between the VM
memory space and the host memory space

• It gives us Copy on Write ability, Efficient exec
implementation, but also some difficulty

Guest Virtual Memory

Guest Physical Memory

Host Physical Memory

Guest

Host

48bit

39bit

≦39bit

Memory Translation

LINUX APPLICATION

Duplicated Address Translation!

LINUX APPLICATION

Guest Virtual Memory

Guest Physical Memory

Host Physical Memory

Guest

Host

48bit

39bit

≦39bit

=

Disable

Memory Translation

Straight Mapping

Guest Virtual Memory

Guest Physical Memory

Host Physical Memory

Guest

Host

48bit

39bit

≦39bit

=

Memory Translation

LINUX APPLICATION

Single Address Translation

Virtual File System

from user

resolve_path

flag_conv strncpy_from_user

fs.ops.open

Symlinks & Mountpoints

to user
OOP

Virtual File System

• open system call

/

usr
etc

Users
dev

tmp

/Users
/dev
~/.noah/tree/usr
~/.noah/tree/etc
/tmp

Virtual File System

Other System Calls
Just call macOS’s one

getuid getpid

alarm

semget

getpgidgetgid

time

Need conversion

futex emulate with conditional value

socket integrate with VFS

sigaction create signal frame inside VM

gettid generate from threadid

Current Implementation
Status of Noah

Current Implementation
Status of Noah

• Still in development

• Currently capable of running

• apt-get, pacman (Not all subcommands are supported yet)

• vim, gcc, make

• Ruby

• Binutils, ls, cat, …

• X applications; xeyes, xclock, xfwrite, doom 3, …

• sudo, curl, nc, man, …

• The most easiest way to build Linux kernel on macOS is to use Noah!

Performance

• Performance data will be public in the presentation
since it contains unpublished materials

Agenda
• What is Noah

• Background

• Noah in Detail

• Architecture Overview

• Advantages of Noah Architecture

• Subsystem Implementation

• Memory management, VFS, and the other

• Current Implementation Status and Performance

• Related Technologies and Comparison  
(Windows Subsystem for Linux, Linuxulator, and so on)

• Their Possible Impact on Cross Platform Development

Related Technologies

Linux Compatibility Layers

• OS Built-in

• Windows Subsystem for Linux

• FreeBSD’s Linuxulator

• Third Party Middleware

• Foreign LINUX

Windows Subsystem for
Linux (WSL)

• Built-in Linux compatibility layer for Windows 10 by Microsoft

• Picoprocess contains a Linux ELF binary. Kernel drivers (LXCore and LXSS)
handle system calls from it in kernel mode

Quoted from https://blogs.msdn.microsoft.com/wsl/2016/04/22/windows-subsystem-for-linux-overview/

Linuxulator

• Built-in Linux compatibility layer for FreeBSD

• FreeBSD has a loader for Linux ELF and
implementations of Linux system calls

• Similar approach to WSL’s LXSS / LXCore
(Linuxulator is older, though)

Foreign Linux

• https://github.com/wishstudio/flinux

• Run unmodified Linux applications on Windows by
dynamic binary translation and system call
emulation

• It seems that the overhead of dynamic binary
translation is a bit heavy, however…

https://github.com/wishstudio/flinux

Comparison
OS Binary

Compatibility Portable No Kernel
Modification

Smooth
Interaction

Low  
Overhead

Noah macOS ✔ ✔ ✔ ✔ ✔

WSL Windows ✔ ✗ ✗ ✔ ✔

Linuxulator FreeBSD ✔ ✗ ✗ ✔ ✔

Foreign
LINUX Windows ✔ ✔ ✔ ✔ ✗

Full VM Any ✔ ✔ ✔ ✗ ✔
*with processor hardware

virtualization

Future Cross Platform
Development

Now major four operating
systems have Linux compatibility

• Linux could be regarded as “standard” like POSIX

• In the future, once you write a Linux application, it
simply could run any platforms

• Noah could help it!

Summary
• We introduced Noah, which is a middleware that

runs unmodified Linux ELF applications on macOS

• Noah adopts a new hypervisor based approach with
many merits

• Now four major operating systems have Linux
compatibility. In the future, your Linux applications
could run anywhere!

