
Getting Started with
OpenDaylight

Natarajan Dhiraviam, Kalaiselvi K, Dell R&D

Background to get started with ODL

OpenDaylight can do for networking

what Linux has done for the computing

industry.

- David Meyer of Brocade

Overview of ODL

Agenda

• Brief Insight into ODL
Architecture

• Introduction to SAL /
MD –SAL

• Introduction to SAL
plugins / flows

• Data modelling and
YANG

• Karaf

• Maven and Build

• Test environment

Background

What is SDN?
• According to Open Networking Foundation [Purist definition]

SDN is a new approach to networking in which network control is

decoupled from the data forwarding function and is directly

programmable.

The result is an extremely dynamic, manageable, cost-effective, and
adaptable architecture that gives administrators unprecedented

programmability, automation, and control.

Control Plane

Switch: Data
Plane

Logical
Switch

Mgmt &
Analytics

Switch:

Data & Control
Plane Plane

API

(e.g. OpenFlow)

Mgmt

SNMP/CLI

XML

NETCONF

Network
Services

Traditional Model SDN Model

Network
Services

Control Plane

Switch: Data
Plane

ODL

ODL Structure

ODL Components

Key repositories of ODL

• Controller : Core Controller functionality including MD-SAL and Base NSF
(Network Service Function).

• OpenFlowPlugin : Southbound Plugin for Openflow Protocol communication.

• OpenFlowjava : Library for Serialization/De-Serialization of OpenFlow messages.

• YangTools : Handles Code generation parsing Yang Models and RestConf.

• Integration Repo : Integrates all the ODL Projects as a deliverable.

SAL

Service Abstraction Layer (SAL)

Evolution of SAL

MD-SAL

MD-SAL

• Model-Driven SAL (MD-SAL) is a set of
infrastructure services aimed at providing
common and generic support to application
and plugin developers.

• MD-SAL currently provides infrastructure
services for:

• Data Store

• RPC / Service routing

• Notification subscription and publish services

AD-SAL to MD-SAL
S

e
e

 h
o

w
 to

 co
n

ve
y

 th
a

t th
e

re
 a

re
 tw

o

S
A

Ls , w
ith

o
u

t g
e

ttin
g

 in
to

 m
o

re
 d

e
ta

ils o
f

e
ith

e
r A

D
-S

A
L o

r M
D

-S
A

L a
t th

is p
o

in
t

MD-SAL – programmer’s view

MD-SAL plugin

MD-SAL Plugin Types

• Southbound Protocol Plugin

• Manager-type Application

• Protocol Library

• Connector Plugin

Plugin Development Process

Designing a plugin

• During the design phase, the plugin designer
• decides which data will be consumed by the plugin

and

• imports the SAL APIs generated from the models of
the API provider.

• The designer decides which data will be
provided by the plugin & and how

• The designer designs the data model for the
provided data. The data model is then used to
generate the SAL APIs for the model.

Implementing a plugin

• The implementations for the generated consumer
and provider APIs, along with other plugin features
and functionality, are developed.

• The resulting code is packaged in a “plugin” OSGI
bundle. Note that a developer may package the
code of a subsystem in multiple plugins or
applications that may communicate with each other
through the SAL.

• The generated APIs and a set of helper classes are
also built and packaged in an “API” OSGI bundle.

Data modelling & YANG

Data modelling

• In order to describe the structure of data
provided by controller components, a domain-
specific modeling language to model services
and data abstractions is to be used.

• Such language would allow

• Modeling the structure of XML data and
functionality provided by controller components.

• Defining semantic elements and their relationships.

• Modelling all the components as a single system.

YANG Modelling : Introduction

• YANG is a data modeling language used to model configuration
and state data manipulated by the Network Configuration
Protocol.

• YANG models the hierarchical organization of data as a tree in
which each node has a name, and either a value or a set of
child nodes.

• The XML nature of YANG data model presents an opportunity
for self-describing data

Contd

• Controller components and applications using the
controller’s northbound APIs can consume this in a
raw format, along with the data’s schema.

• Utilizing a schema language simplifies development
of controller components and applications.

• Developer of a module that provides some
functionality (a service, data, functions/procedure)
can define a schema and thus create simpler APIs
for the provided functionality, and thereby lower
the risk of incorrect interpretation of data structures
exposed through the SAL.

YANG - concepts

Dynamic evaluation of YANG at
run time
• When ODL loads a bundle it searches that bundle (JAR) for

files that end in “*.yang”.

• For each YANG file found it processes that file and builds
several things dynamically including the structures to expose
that as a RESTCONF compliant YANG interface.

• It also uses JavaAssist to dynamically create and compile
classes that are used to marshal the YANG objects between
POJOs and a XML/JSON representation.

• Lastly it maintains information based on the yang to translate
between what ODL calls a binding aware class (POJO) and RPC
(Java method) and binding independent implementations of
the RPCs (such as you might find implemented on a router
that is based on NETCONF).

Karaf

Karaf

• An OSGi-based runtime container

• Allows dynamic deployment of application bundles.

• Allows runtime installation, uninstallation of the
deployed bundles without reboot.

• Application generally deployed as a feature.

• Feature – a set of bundles with an optional set of
configuration files.

Feature

Features are defined in feature xml descriptor as

<features
xmlns="http://karaf.apache.org/xmlns/features/v1.2.0">

<feature name="feature1" version="1.0.0">

<bundle>...</bundle>

<configfile finalname=“config filename” </configfile>

</feature>

</features>

Build

Maven
• A standard way to build the

projects

• A clear definition of what the
project consisted of

• An easy way to publish
project information and a way
to share JARs across several
projects

• Inherently project-centric :
everything revolves around
the notion of a project.

• Maven essentially provides a
way to help with managing:

• Builds

• Documentation

• Reporting

• Dependencies

• SCMs

• Releases

• Distribution

Project Object Model

• POM is the basic unit of
work in Maven.

• POM contains every
important piece of
information about
project

• Is essentially a one-stop-
shopping for finding
anything related to your
project.

• Minimum requirement
for a POM are the
following:

• project root

• modelVersion - should be
set to 4.0.0

• groupId - the id of the
project's group.

• artifactId - the id of the
artifact (project)

• version - the version of
the artifact under the
specified group

Maven Phases & Archetypes

• Maven Phases

• Validate

• Compile

• Test

• Package

• Integration-test

• Verify

• Install

• Deploy

• Clean

• Site

• Maven Archetype

• A model from which all
other things of the same
kind are made

• Archetypes are
“templates” of
applications that can be
used to generate

• ODL Maven archetype :
odl-model-project

Testing your code

Testing your code
• JUNIT

• White-box testing framework tied with the maven using
jacoco surefire plugin.

• Test code added in the same package name with suffix
*Test.java

• Test methods has to be written with public access and should
not return any value.

• Test is considered to be a failure when exception is thrown
by the test method.

• eg public void testMethod() throws Exception

• Assert class and verify method can be used for the unit test
verification

JUNIT
Annotations Description

@Test Specifies the method as the test method

@Test (expected =

Exception.class)

Fails if test method doesn’t throw the given

exception

@Before Used to initialize the test variables; executes

before each test.

@After Executed after each test to cleanup the test

environment

@BeforeClass Static method executed once, before the start of

all tests

Performs common one-time initialization for the

test environment.

@AfterClass Static method executed once, after the finish of

all tests

Performs clean-up of the test environment.

Mockito

• A mocking framework

• Creates dummy objects(mock objects) to be used in the
testing.

• Avoids creation of real test objects

• Useful in testing methods involving inter-bundle
communication.

Working with ODL Code

Working with ODL Code

• Steps to follow when working with the ODL code
base

• Set up the Gerrit account

• Pull the Code from ODL repository

• Run the ODL Helium

Build - Precursor

• Maven is a Java tool, so you must have Java installed

• Download and install maven

• OpenDaylight has its Nexus repository

• .m2/settings.xml controls how code is pulled & compiled.

• https://wiki.opendaylight.org/view/GettingStarted:Development_Environment_Set
up

• Optional: Increase the amount of RAM maven can use

• export MAVEN_OPTS='-Xmx1048m -XX:MaxPermSize=512m'

Thank You Note

Appreciate the ODL Community, wiki,
previous ODL summit speakers and
enthusiasts for wealth of information they
have created on ODL

Backup Slides

ODL Backup Slides

ODL Framework overview

MD-SAL / Flow Back-up Slides

SAL & plugins

Add Flow via NB Rest API

Delete flow from switch

How MD-SAL identifies SB
Plugin for flow provisioning
• In SB plugin, extend SalFlowService (an RpcService that provides APIs

to add, delete and update flows) to provide an implementation of
addFlow, removeFlow and updateFlow.

• Use addRoutedRpcImplementation method here.

• For flow service, MD-SAL identifies the southbound plugin using
node. So southbound plugin needs to tell RoutedRpcRegistration for
flow service that it has the provider

• Then register this instance identifier with the RoutedRpcRegistration
(a BindingAwareBroker interface) for flow service to beprocessed by
a given RpcService.

• Whenever a new device is connected using southbound plugin,
create an instance identifier and register it with flow registration.

• Now, whenever MD-SAL gets a flow provisioning request , it routes it
to southbound plugin.

YANG additional slides

YANG – An Introduction

• Models semantics and data organization

• Models configuration and state data
manipulated by the Network Configuration
Protocol.

• Syntax falls out of semantics

• Ability to model RPCs, and notifications

Modules and submodules

SubX SubY SubZ

SubA

Mod1

Mod2

Include

Import

Include

module acme-module {

namespace "http://acme.example.com/module";

prefix acme;

import "yang-types" {

prefix yang;

}

include "acme-system";

organization "ACME Inc.";

contact joe@acme.example.com;

description "The module for entities

implementing the ACME products";

revision 2007-06-09 {

description "Initial revision.";

}

…

}

The "leaf" Statement

YANG Example:

leaf host-name {

type string;

mandatory true;

config true;

description "Hostname for this system";

}

• A leaf has

• one value

• no children

• one instance

XML Encoding:

<host-name>my.example.com</host-name>

The "leaf-list" Statement

YANG Example:

leaf-list domain-search {

type string;

ordered-by user;

description "List of domain names to search";

}

• A leaf-list has

• one value

• no children

• multiple instances

XML Encoding:

<domain-search>high.example.com</domain-search>

<domain-search>low.example.com</domain-search>

<domain-search>everywhere.example.com</domain-search>

YANG Example:

container system {

container services {

container ssh {

presence "Enables SSH";

description "SSH service specific configuration";

// more leafs, containers and stuff here...

}

}

}

The "container" Statement

May have specific meaning
(presence)

Or may simply contain other
nodes

� A container has
� no value

� holds related children

� one instance

XML Encoding:

<system>

<services>

<ssh/>

</services>

</system>

The "list" Statement
YANG Example:

list user {

key name;

leaf name {

type string;

}

leaf uid {

type uint32;

}

leaf full-name {

type string;

}

leaf class {

type string;

default viewer;

}

}

XML Encoding:

<user>

<name>glocks</name>

<full-name>Goldie</full-name>

<class>intruder</class>

</user>

<user>

<name>snowey</name>

<full-name>Snow</full-name>

<class>free-loader</class>

</user>

<user>

<name>rzull</name>

<full-name>Repun</full-name>

</user>

• A list is

– uniquely identified
by key(s)

– holds related
children

– no value

– multiple instances

Built-in types

Category Types

Integral {,u}int{8,16,32,64}

String string, enumeration, boolean

Binary Data binary

Bit fields bits

References instance-identifier, keyref

Other empty

YANG Example:

typedef percent {

type uint16 {

range "0 .. 100";

}

description "Percentage";

}

leaf completed {

type percent;

}

Derived types

• Constraints

• range

• length

• pattern

• regex

• A modules may use
types imported from
other modules

XML Encoding:

<completed>20</completed>

YANG Example:

leaf limit {

description "Number to allow";

type union {

type uint16 {

range "0 .. 100";

}

type enumeration {

enum none {

description "No limit";

}

}

}

}

The "union" type

• Allows a leaf to
contain a superset of
types

XML Encoding:

<limit>20</limit>

XML Encoding:

<limit>none</limit>

The "rpc" Statement

• Defines RPC

• method names

• input parameters

• output parameters

rpc activate-software-image {

input {

leaf image-name {

type string;

}

}

output {

leaf status {

type string;

}

}

}
<rpc xmlns="urn:mumble">

<activate-software-image>

<image-name>image.tgz</image-name>

</activate-software-image>

</rpc>

The "notification" Statement

YANG Example:

notification link-failure {

description "A link failure has been detected";

leaf if-index {

type int32 { range "1 .. max"; }

}

leaf if-name {

type keyref {

path "/interfaces/interface/name";

}

}

}

• Defines notification

• Name

• Content

The "augment" Statement

• Extends data model

• Current or imported modules

• Inserts nodes

• Into an existing hierarchy

• Nodes appear in current
module's namespace

• Original (augmented) module
is unchanged

YANG Example:

augment system/login/user {

leaf expire {

type yang:date-and-time;

}

}

XML Encoding:

<user>

<name>alicew</name>

<class>drop-out</class>

<other:expire>2112-04-01T12:00:00</other:expire>

</user>

Semantic Differentiators

• Notice that YANG is modeling the semantics and data
organization

• Not just the syntax

Statement Purpose

unique Ensure unique values within list siblings

keyref Ensure referential integrity

config Indicate if a node is config data or not

default Supply default value for leafs

error-app-tag Define the tag used when constraint fails

error-message Define the message used

mandatory Node must exist in valid config datastore

