
© 2009 VMware Inc. All rights reserved

Programmable Networking with Open vSwitch

Jesse Gross

LinuxCon
September, 2013

2

Background: The Evolution of Data Centers

Virtualization has created data center workloads that are large, rapidly
changing, and location independent.

§  Enabled by a layer of software indirection between logical unit (virtual
machine) and underlying hardware (physical machine).

§  The virtualization layer exposes a programmable API to what previously
required a human to reconfigure.

§  Current networking has many of the same problems as traditional servers,
limiting the benefits of virtualization.

Networking needs to be programmable

3

What is Open vSwitch?

Open vSwitch is an open source switching stack for virtualization.

The most powerful piece of real estate in a network is the edge and the
hypervisor is the new edge.

Two ways to view OVS:

• Gaining back visibility and control that usually comes from the features of a
hardware switch.

•  An opportunity to exploit the flexibility that comes from software and
virtualization.

Open vSwitch allows you to write a program to control your network.

4

Sample of Contributors

5

openvswitch.ko

ovsdb-server

User

Kernel

Control & Management Cluster

ovs-vswitchd

Management Protocol (6632/TCP)
OpenFlow (6633/TCP)
Netlink

Off-box

Open vSwitch Architecture

6

Basic Features

Open vSwitch brings many features standard in hardware devices to
virtualized environments:
•  VLANs
•  LACP and other bonding modes

•  STP
• QoS shaping and policing

•  ACLs over a range of L2-L4 protocols

• NetFlow, sFlow, IPFIX, mirroring
•  A variety of tunneling protocols

Plus remote programmability and management features:
• OpenFlow 1.0 and experimental support for versions 1.1-1.3.

•  All features and status remotely configurable and viewable.

• Many extensions for supporting high availability control clusters.

7

Advanced Capabilities

Programmability requires primitives more similar to a CPU than a network
ASIC.

Over time, the flow table in Open vSwitch has slowly changed from a list of
policies to a nearly general purpose processing pipeline.

Examples:

§  Resubmit: Move between multiple independent flow tables, similar to
 subroutines.

§  Registers: Storage for intermediate metadata, including manipulation
 functions such as a stack.

§  Learning: Dynamically generate new flows based on packet traffic
 patterns.

§  Hashing and Perform actions based on deterministic or probabilistic
Sampling: properties of the traffic.

8

A Simple Switch Pipeline

Admission Control Input VLAN
Processing

Learn
Source

MAC/VLAN
Lookup

Output Port
Output
VLAN

Processing

Open vSwitch makes it possible to emulate a traditional pipeline or extend
for new models.

1.  Flows to drop illegal packets (i.e. reserved addresses) and resubmit valid
packets to the next stage.

2.  Classify packets on ingress port and add VLAN tag. Resubmit to next stage.

3.  Learning action to generate new flows based on source MAC, VLAN, and
input port. Fields populate a template and placed in next stage. Resubmit.

4.  Match flows generated by learning or use low priority flood flow. Resubmit.

5.  Strip VLAN tag for access ports and output.

9

Performance

How does programmability impact forwarding rates?

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000 10000

Native
OVS

B
an

dw
id

th
 (M

bp
s)

Message Size (KB)

10

Performance

Many aspects of performance:

Established Flows:

 New flows are sent to userspace and exact match entries are installed in
 the kernel. All classification happens in userspace, out of the fast path.
 Most additional features do not affect performance.

Connection Setup:

 Most challenging case for Open vSwitch. Optimizations are currently
 under development to both reduce the number of unique flows and
 increase the speed of setup.

Many Sustained Connections:

 A large number of flows does not directly affect throughput but the
 overhead of maintaining statistics increases. Heuristics are used to
 balance the rate of updates with overhead.

11

Integration Points: libvirt and OpenStack

Quantum

 Open vSwitch

Plugin

Nova

Swift

OVS + libvirt

Hypervisors
Two main touch points between Open
vSwitch and the rest of the environment:

libvirt (0.9.11): VM lifecycle on hypervisors –
attach ports to bridges.

OpenStack/Quantum (Folsom): Manage
many Open vSwitch instances to create
network abstractions.

12

Physical Compute & Memory

Server Hypervisor
Requirement: x86

Virtual
Machine

Virtual
Machine

Virtual
Machine

Application Application Application

x86 Environment

Physical Network

Network Virtualization Platform
Requirement: IP Transport

Virtual
Network

Virtual
Network

Virtual
Network

Workload Workload Workload

L2, L3, L4-7 Network Services

Decoupled

Tying It All Together: Network Virtualization

13

Future Directions

Performance
•  Wildcards in the kernel to reduce flow setups

•  Userspace multi-threading

•  General optimization

Increased Integration
•  Tunnel upstreaming

•  Further native support from both hypervisor and network management tools

•  Additional use of Linux components, particularly for stateful features

Additional Features
•  Production-ready support for OpenFlow 1.1+

•  Additional protocols and networking functionality

•  More programmability and controller assistance

Contribute: http://openvswitch.org

14

 Q & A

