
An open source user space fast path TCP/IP stack



Industry network challenges

 Growth in data traffic means that even small network nodes needs a fast path 

 The Linux IP stack is slow and does not scale

 High throughput IP processing solutions has been around for a number of years

 Why this now? 

 Most existing implementations are either hardware specific or proprietary closed source

 SoC vendor solutions and for example 6Wind

 Developing this basic building block from scratch in-house does not make sense

 Not even for the big network equipment providers



Enter OpenFastPath!

A TCP/IP stack that

 lives in user space

 is optimized for scalability and throughput

 uses Data Plane Development Kit (DPDK) and

 Open Data Plane (ODP) to access network hardware

 runs on ARM, x86, MIPS, PPC hardware

 runs natively, in a guest or in the host platform 

The OpenFastPath project 

 is a true open source project 

 uses well known open source components

 open for all to participate – no lock-in to HW or SW

 Nokia, ARM and Enea key contributors
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IP forwarding application in user space - 256 routes,  4 x 10 Gbps, 64Byte packets

Kernel OFP

…performance - OFP is 20x Linux TCP/IP stack!

x20

 Intel Xeon E5-2697 v3 
processor (turbo 
disabled)

 Two 82599 NICs with 
modified netmap
ixgbe 4.1.5 driver (12 
rx/tx queue pairs) 
totaling 4x10Gbps 
ports

 Ubuntu 14.04 - 3.16.0-
53-generic. CPU 
isolation used to test 
kernel IP forwarding.

 OFP fpm_burstmode
example application

 ODP 1.4.1.0 ext. with 
multi queue packet I/O 
support



Features implemented

Fast path protocols processing:

 Layer 4: UDP termination, TCP termination, 
ICMP protocol

 Layer 3 

 ARP/NDP

 IPv4 and IPv6 forwarding and routing

 IPv4 fragmentation and reassembly

 VRF for IPv4

 IGMP and multicast

 Layer 2: Ethernet, VLAN

 GRE and VXLAN Tunneling

Routes and MACs are in sync with Linux

Integration with Linux Slow path IP stack 
through TAP interface

Command line interface

 Packet dumping and other debugging

 Statistics, ARP, routes, and interface printing

 Configuration of routes and interfaces with 
VRF support

OFP IP and ICMP implementations passing 
Ixia conformance tests

IP and UDP implementations has been 
optimized for performance 

 TCP implementation is functional but not 
performance optimized

Integrated with NGiNX webserver



OpenFastPath Source code

New open-source code 

 Developed by partners during the incubation stage

UDP, TCP, ICMP code was ported from libuinet (User space FreeBSD port)

 Non-blocking event based socket API

 Modular, multithreaded design focused on performance and scalability

 Tightly coupled to application, linked in as a library

 Maintainability – Tracks evolution of FreeBSD

High performance and scalable implementation for MAC and Route tables

 Lockless synchronization
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OpenFastPath multicore System View
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Ingress Packet Processing
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Optimized OpenFastPath socket APIs 

New zero-copy APIs optimized for single thread run-to-completion environments

 UDP

 Send: Optimized send function with a packet container (packet + meta-data)

 Receive: A function callback can be registered to read on a socket. Receives a packet 
container and socket handle

 TCP

 Accept event: A function callback can be registered for TCP accept event. Receives socket 
handle. 

 Receive: A function callback can be registered to read on socket. Receives a packet 
container and a socket handle

Standard BSD Socket interface

 For compatibility with legacy applications



Other OpenFastPath user application APIs

 Initiation of Open Fast Path

 Interface configuration

 Route and MAC table access

 Packet Ingress and Egress processing

 Hooks for IP local, IP forwarding and GRE

 Timer callbacks

 Statistics

 Packet capture



Code examples 

ODP thread creation above

OFP default dispatcher to the left 



Why should someone use OpenFastPath?

Portable high performance solution supporting multiple HW platforms

 Functionality verified on ARM, MIPS and x86 HW 

Highly optimized and scalable solution

 Non-blocking event based API focused on performance and scalability

User space implementation

 Simplifies maintenance and maximizes throughput and scalability by minimizing Linux kernel 
dependency

Very flexible deployment scenarios

 Embedded, virtualized, servers, edge nodes, etc. 



Why engage in the OpenFastPath project?

OpenFastPath is designed as an open source project from the start 

 Based on known open source code like libuinet

 Not an old proprietary code base turned open source….

The framework is highly modular, adaptable and lightweight.

 Not restricted to plug-ins

Membership is cheap and open for all

 Potential to impact is high

Very high interest from major industry players



What’s next? - Get involved!

Download the source code from: https://github.com/OpenFastPath/ofp

Check us out at www.openfastpath.org to get more information about the project

Subscribe to Mailing-list: http://www.openfastpath.org/mailman/listinfo

Ping us on our freenode chat: #OpenFastPath

Membership is cheap and open to all!

https://github.com/OpenFastPath/ofp
http://www.openfastpath.org/
http://www.openfastpath.org/mailman/listinfo
sss


Enea services offering on OFP 

Integration services

 Integration of OFP in customer hardware and software system. 

Hardware porting and optimization services

 Test, verification and optimization of silicon vendor ODP implementation together with OFP

Feature development services

 Pre-studying, specifying and implementing new OFP features and protocols. 

Production test, maintenance and support services

 Production testing, release management and support. 



Thank You
F o r  a d d i t i o n a l  i n f o r m a t i o n , p l e a s e  v i s i t  

w w w. o p e n f a s t p a t h . o r g

http://www.openfastpath.org/

