YFastPath

An open source user space fast path TCP/IP stack



>/Industry network challenges

Growth in data traffic means that even small network nodes needs a fast path
= The Linux IP stack is slow and does not scale

High throughput IP processing solutions has been around for a number of years
= Why this now?

Most existing implementations are either hardware specific or proprietary closed source
= SoC vendor solutions and for example 6Wind

Developing this basic building block from scratch in-house does not make sense
= Not even for the big network equipment providers



))Enter OpenFastPath!

A TCP/IP stack
= lives in user space
= is optimized for scalability and throughput
= uses Data Plane Development Kit (DPDK) and
= Open Data Plane (ODP) to access network hardware
= runs on ARM, x86, MIPS, PPC hardware
= runs natively, in a guest or in the host platform

The OpenFastPath project
= |s a true open source project
= uses well known open source components
= open for all to participate — no lock-in to HW or SW
= Nokia, ARM and Enea key contributors

User Termination or Forwarding

Socket Egress API Socket Hook API

Host OS (Linux)

Route
tables

PKTIO Ingress API
Interface
Management User/Default
Dispatcher

Slow
path | ©

ODP/DPDK FW/HW

ENEA ARM

NOKIA




))A main benefit with OFP is portability....

Application Application Application Application

Guest OS

OS / Bare metal
ARM
Any Architecture
Network I/F

Network I/F

ODP HW+FW
OFP

B DPDK/ODP

" Application
r—— Network I/F

Network I/F
* Native support in execution seee A N D




> ...performance - OFP is 20x Linux TCP/IP stack!

IP forwarding application in user space - 256 routes, 4 x 10 Gbps, 64Byte packets
60
——Kernel ——OFP

[ o ® — ® g

1 2 3 4 5 6 7 8 9 10 11 12

_ Physical Cores
Intel Xeon E5-2697 v3 = Two 82599 NICs with

grosessor (urbo” - modied petmap T DU LG 3160+ OFF o burtmoce
disabled) ixgbe 4.1.5 driver (12 loton Used to test
{étgiiﬂ“ﬂiﬁgé'gs)s kernel IP forwarding. = QDP 1.4.1.0 ext. with
ports J P multi queue packet I/O

support



>/Features implemented

Fast path protocols processing: Command line interface
= Layer 4. UDP termination, TCP termination, = Packet dumping and other debugging
ICMP protocol = Statistics, ARP, routes, and interface printing
" Layer 3 = Configuration of routes and interfaces with
= ARP/NDP VRF support

* IPv4 and IPv6 forwarding and routing  QFp IP and ICMP implementations passing
= IPv4 fragmentation and reassembly Ixia conformance tests

" VRF for IPv4 IP and UDP implementations has been

* IGMP and multicast optimized for performance
" Layer 2: Ethernet, VLAN = TCP implementation is functional but not
= GRE and VXLAN Tunneling performance optimized
Routes and MACs are in sync with Linux Integrated with NGiNX webserver

Integration with Linux Slow path IP stack
through TAP interface

DFastPath



>/OpenFastPath Source code

New open-source code
= Developed by partners during the incubation stage

UDP, TCP, ICMP code was ported from libuinet (User space FreeBSD port)
= Non-blocking event based socket API
= Modular, multithreaded design focused on performance and scalability
= Tightly coupled to application, linked in as a library
= Maintainability — Tracks evolution of FreeBSD

High performance and scalable implementation for MAC and Route tables
= Lockless synchronization

DFastPath



))OpenFastPath system components

DPDK Packet
NICs API o2
ODP APl processing

API

Application

IPv4 Linux
TAP
IPV6 Routes, ARP API cernel

MAC Netlink

| Application
i Interface
ODP AP configuration — Configuration
~ Linux
B ODP —» Packets
—» Information
B HW

OperpFastPath



»OpenFastPath System View

User Termination or Forwarding

Socket Egress API Socket Hook API

Host OS (Linux)

Init API

OpenFastPath (OFP)

pkt _cnt = odp pktio_recv(pktio,
pkt tbl, OFP PKT BURST SIZE);
or

buf = odp_schedule (&¢queue,
ODP_SCHED WAIT);

Route
tables

PKTIO Ingress API
Interface
Management User/Default
Dispatcher

Slow
path

| Application
B OFP

. Linux
B ODP/DPDK
B W

ODP/DPDK FW/HW —> i

AIDIP )
HW / NICs —— Packets




D> OpenFastPath multicore System View

Socket callback Socket callback Socket callback Single
/Hook API /Hook API /Hook API thread

|
ol
|
|
|
|
|

: context
|
|
|
|
|
|
|
|
PKTIO Ingress API PKTIO Ingress API :
> |
o O
|
B OFP
ODP/DPDK FW/HW Linux
I ODP/DPDK

NICs

B Hw



Loopback to

))Ingress Packet Processing

.................................................... VXLAN

IPv4/v6 local [
hook API  [E

IP UDP TCP ...
classified by
HW

Socket API

IPv4/v6

IPv4/v6 forward [
hook API  [E

Transport(L4) :
classifier

IPv4
Reassembly

IPv4 GRE GRE hook API

Ethernet
VLAN

Ingress API

RN

User API
Fallback to IPV4-/V6 -
slowpath for (R L3
unknown traffic Update MAC L

IPv4/v6 output Pre-classified

table

M Send ARP
request

Packets
Information

OperpFastPath



))Egress Packet Processing

UDP output

IPv6 output

R IPv4 Ethernet
{Pv4 output | Fragmentation VLAN

Socket/Egress
API

User API
L4 IPv4 GRE
L3 tunneling

L2
Pre-classified VXLAN

Packets
Information

RN

OperpFastPath



>/Optimized OpenFastPath socket APIs

New zero-copy APIs optimized for single thread run-to-completion environments
= UDP

= Send: Optimized send function with a packet container (packet + meta-data)

= Receive: A function callback can be registered to read on a socket. Receives a packet
container and socket handle

= TCP

= Accept event: A function callback can be registered for TCP accept event. Receives socket
handle.

= Receive: A function callback can be registered to read on socket. Receives a packet
container and a socket handle

Standard BSD Socket interface
= For compatibility with legacy applications

DFastPath



>/Other OpenFastPath user application APIs

= Initiation of Open Fast Path GitHub

his repository Explore

= Interface configuration OpenFastPath / ofp

- Route ahd MAC table access <> Code Issues 1 Pull requests 2 Pulse Graphs

Branch: master ~ | ofp / include / api |

= Packet Ingress and Egress processing

Anders Roxell committed with sovu cleanup: only include odp.h ..

= Hooks for IP local, IP forwarding and GRE
ofp.h
- Tlmel’ Ca”baCkS ofp_cli.h Sraceful shutdown: stop netlink, tun and cli threads
ofp_cenfig.h

= Statistics b cebuah

ofp_ermo.h

ofp_ethemet.h

I M W W M o W

= Packet capture

DFastPath



»>Code examples

2 * Create and launch dataplane dispatcher worker threads to be placed
78 event_cnt = odp_schedule multi(&in gueue, ODP_SCHED WAIT,

183 * according to the cpumask, thread tkl will ke populated with the
events, OFF EVENT BURST SIZE); -

184 * created pthread IDs.

80 [H for (ewent idx = 0; event idx < ewvent cnt; event idx++) {
81 ev = e;ents[event_id:{?: - - 185 "
82 186 * In this case, all threads will run the default_event dispatcher
83 if (ev — ODP EVENT INVALID) 7 * function with ofp eth vlan processing as argument.
g4 continue;_ B =
85 # If different dispatchers should run, or the same be run with differnt
86 [ if (odp_event_type(ev) = CDP_EVENT_TIMECUT) { 1 # input arguments, the cpumask is used to control this.
87 ofp timer handle (ev) ; 191 1 *
continue; memset (thread thl, O, sizeof(thread tbl)):
iu I ¥ 183 ret val = odph linux pthread create(thread tbl,
a1 O if (odp event type(ev) — ODP_EVENT PACKET) { s &cpumask,
92 pkt = odp_packet_from event (ev): Az default_event dispatcher,
93 [H#if O 196 ofp eth wvlan processing):;
100 ofp packet input(pkt, in gueus, pkt func): 1 = if (ret_wal != num workers) {
0 con;inue: - - - 1 OFF_ERR("Error: srker threads, "™ %
= } 199 "expected 2
200 num_workers, ret_wval):;
OFF_ERE("Unexpected event type: iu", odp event type(ev)): 201 odp term global():
202 return EXIT FAILURE;
/* Free events by type */ 5 N
= if (odp_event type(ev) — ODP_EVENT BUFFER) { - = }
odp buffer free(odp buffer from eventev)):
conzinue: - - - -
11 r }

W N
{1}
il

if (odp event type(ev) = ODP_EVENT CRYPTC COMPL) ODP thread Cl‘eatlon above

odp crypto compl free(

odp crypto compl from event(ev)):

OFP default dispatcher to the left




>/Why should someone use OpenFastPath?

Portable high performance solution supporting multiple HW platforms
= Functionality verified on ARM, MIPS and x86 HW

Highly optimized and scalable solution
= Non-blocking event based API focused on performance and scalability

User space implementation

= Simplifies maintenance and maximizes throughput and scalability by minimizing Linux kernel
dependency

Very flexible deployment scenarios
= Embedded, virtualized, servers, edge nodes, etc.

DFastPath



>/Why engage In the OpenFastPath project?

OpenFastPath is designed as an open source project from the start

= Based on known open source code like libuinet
= Not an old proprietary code base turned open source....

The framework is highly modular, adaptable and lightweight.
= Not restricted to plug-ins

Membership is cheap and open for all
= Potential to impact is high

Very high interest from major industry players



GitHub This repository Explore Featy

OpenFastPath / ofp

’ ® <> Code ssues 1 Pull requests 2 Pulse Graphs
I l ° I I ° OpenFastPath project
275 commits 1 branch
Eranch- master Find file = HTT

bogdanPricope committed with Pekkari Update packet burst send support: update proces

Download the source code from: htips.//github.com/OpenFastPath/ofp

Check us out at www.openfastpath.org to get more information about the project

Subscribe to Mailing-list: hitp.//www.openfastpath.org/mailman/listinfo

Ping us on our freenode chat: #OpenfastPath » FastPath

Membership is cheap and open to all!

WHAT IS OFP? [@] TechmealOvernew



https://github.com/OpenFastPath/ofp
http://www.openfastpath.org/
http://www.openfastpath.org/mailman/listinfo
sss

>/Enea services offering on OFP

Integration services
= Integration of OFP in customer hardware and software system.

Hardware porting and optimization services
= Test, verification and optimization of silicon vendor ODP implementation together with OFP

Feature development services
= Pre-studying, specifying and implementing new OFP features and protocols.

Production test, maintenance and support services
= Production testing, release management and support.



>/Thank You

additio
WWWwW.ope f tp th rq

DFastPath


http://www.openfastpath.org/

