
An open source user space fast path TCP/IP stack

Industry network challenges

 Growth in data traffic means that even small network nodes needs a fast path

 The Linux IP stack is slow and does not scale

 High throughput IP processing solutions has been around for a number of years

 Why this now?

 Most existing implementations are either hardware specific or proprietary closed source

 SoC vendor solutions and for example 6Wind

 Developing this basic building block from scratch in-house does not make sense

 Not even for the big network equipment providers

Enter OpenFastPath!

A TCP/IP stack that

 lives in user space

 is optimized for scalability and throughput

 uses Data Plane Development Kit (DPDK) and

 Open Data Plane (ODP) to access network hardware

 runs on ARM, x86, MIPS, PPC hardware

 runs natively, in a guest or in the host platform

The OpenFastPath project

 is a true open source project

 uses well known open source components

 open for all to participate – no lock-in to HW or SW

 Nokia, ARM and Enea key contributors

VM

Any Architecture

Guest OS

Network I/F

ODP/DPDK*

Host OS

DPDK/ODP

A main benefit with OFP is portability….

Application

OFP

HW
Network I/F

ODP SW

ODP HW+FW

ARM

OS / Bare metal

MIPS PPC

DPDK*

OS / Bare metal

Network I/F

ARM

…. AND

DPDK*

x86

OS / Bare metal

Network I/F

OFP

Application

OFP

Application

OFP

Application

OFP

Application

* Native support in execution

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

M
p

p
s

Physical Cores

IP forwarding application in user space - 256 routes, 4 x 10 Gbps, 64Byte packets

Kernel OFP

…performance - OFP is 20x Linux TCP/IP stack!

x20

 Intel Xeon E5-2697 v3
processor (turbo
disabled)

 Two 82599 NICs with
modified netmap
ixgbe 4.1.5 driver (12
rx/tx queue pairs)
totaling 4x10Gbps
ports

 Ubuntu 14.04 - 3.16.0-
53-generic. CPU
isolation used to test
kernel IP forwarding.

 OFP fpm_burstmode
example application

 ODP 1.4.1.0 ext. with
multi queue packet I/O
support

Features implemented

Fast path protocols processing:

 Layer 4: UDP termination, TCP termination,
ICMP protocol

 Layer 3

 ARP/NDP

 IPv4 and IPv6 forwarding and routing

 IPv4 fragmentation and reassembly

 VRF for IPv4

 IGMP and multicast

 Layer 2: Ethernet, VLAN

 GRE and VXLAN Tunneling

Routes and MACs are in sync with Linux

Integration with Linux Slow path IP stack
through TAP interface

Command line interface

 Packet dumping and other debugging

 Statistics, ARP, routes, and interface printing

 Configuration of routes and interfaces with
VRF support

OFP IP and ICMP implementations passing
Ixia conformance tests

IP and UDP implementations has been
optimized for performance

 TCP implementation is functional but not
performance optimized

Integrated with NGiNX webserver

OpenFastPath Source code

New open-source code

 Developed by partners during the incubation stage

UDP, TCP, ICMP code was ported from libuinet (User space FreeBSD port)

 Non-blocking event based socket API

 Modular, multithreaded design focused on performance and scalability

 Tightly coupled to application, linked in as a library

 Maintainability – Tracks evolution of FreeBSD

High performance and scalable implementation for MAC and Route tables

 Lockless synchronization

NICs

APIInterface

configuration

ODP
Application

CLI

Packet

processing
API

Routes, ARP
IPv4

IPv6

MAC

API

Configuration

Packets

Information

Linux

kernel
TAP

Netlink

API

API

ODP

Linux

ODP API

OFP

HW

Application

OpenFastPath system components
DPDK

Ingress API

User/Default

Dispatcher

OpenFastPath System View

Packets

Ctrl

HW / NICs

Host OS (Linux)

ODP/DPDK FW/HW

ODP SW

TA
P

N
e
tlin

k

Socket Hook APISocket Egress API

User Termination or Forwarding

In
it

A
P

I

OpenFastPath (OFP)

PKTIO

Interface

Management

User

Conf

Code

pkt_cnt = odp_pktio_recv(pktio,

pkt_tbl, OFP_PKT_BURST_SIZE);

or
buf = odp_schedule(&queue,

ODP_SCHED_WAIT);

ODP/DPDK

Linux

OFP

HW

Application
Slow

path

Route

tables

DPDK

OpenFastPath multicore System View

NICs

Dispatcher

1

Ingress API

Socket callback

/Hook API

User Termination or

Forwarding A

In
it

A
P

I

PKTIO

Host OS (Linux)

ODP/DPDK FW/HW

Core 1Core 0 Core NCore 2

Dispatcher

2

Ingress API

User Termination or

Forwarding B

OpenFastPath (OFP)

(SMP multicore library)

N
e
tlin

k
TA

P

PKTIO

Dispatcher

N

Ingress API

User Termination or

Forwarding X

PKTIO

User

Conf

Code

….

….

ODP SW

….

ODP/DPDK

Linux

OFP

HW

Application

Slow

path

Route

tables

Single

thread

context

Socket callback

/Hook API

Socket callback

/Hook API

DPDK

Ingress Packet Processing

Ethernet

VLAN

IPv4/v6

ARP

IPv4/v6 local

hook API

IPv4 GRE

IPv4/v6

routing

IPv4/v6 output

IPv4/v6 forward

hook API

Transport(L4)

classifier

UDP input

TCP input

ICMP

Send ARP

request

Socket API

Update MAC

table Pre-classified

L2

L3

L4

User API

Packets

Information

IPv4

ReassemblyIngress API

Fallback to

slowpath for

unknown traffic

GRE hook API

IP, UDP, TCP, …

classified by

HW

VXLAN

IGMP

Loopback to

VXLAN

NDP

Egress Packet Processing

Socket/Egress

API
IPv4 output

UDP output

TCP output

ICMP error

IPv6 output

IPv4 GRE

tunneling

VXLAN

IPv4

Fragmentation

Pre-classified

L2

L3

L4

User API

Packets

Information

Ethernet

VLAN

Optimized OpenFastPath socket APIs

New zero-copy APIs optimized for single thread run-to-completion environments

 UDP

 Send: Optimized send function with a packet container (packet + meta-data)

 Receive: A function callback can be registered to read on a socket. Receives a packet
container and socket handle

 TCP

 Accept event: A function callback can be registered for TCP accept event. Receives socket
handle.

 Receive: A function callback can be registered to read on socket. Receives a packet
container and a socket handle

Standard BSD Socket interface

 For compatibility with legacy applications

Other OpenFastPath user application APIs

 Initiation of Open Fast Path

 Interface configuration

 Route and MAC table access

 Packet Ingress and Egress processing

 Hooks for IP local, IP forwarding and GRE

 Timer callbacks

 Statistics

 Packet capture

Code examples

ODP thread creation above

OFP default dispatcher to the left

Why should someone use OpenFastPath?

Portable high performance solution supporting multiple HW platforms

 Functionality verified on ARM, MIPS and x86 HW

Highly optimized and scalable solution

 Non-blocking event based API focused on performance and scalability

User space implementation

 Simplifies maintenance and maximizes throughput and scalability by minimizing Linux kernel
dependency

Very flexible deployment scenarios

 Embedded, virtualized, servers, edge nodes, etc.

Why engage in the OpenFastPath project?

OpenFastPath is designed as an open source project from the start

 Based on known open source code like libuinet

 Not an old proprietary code base turned open source….

The framework is highly modular, adaptable and lightweight.

 Not restricted to plug-ins

Membership is cheap and open for all

 Potential to impact is high

Very high interest from major industry players

What’s next? - Get involved!

Download the source code from: https://github.com/OpenFastPath/ofp

Check us out at www.openfastpath.org to get more information about the project

Subscribe to Mailing-list: http://www.openfastpath.org/mailman/listinfo

Ping us on our freenode chat: #OpenFastPath

Membership is cheap and open to all!

https://github.com/OpenFastPath/ofp
http://www.openfastpath.org/
http://www.openfastpath.org/mailman/listinfo
sss

Enea services offering on OFP

Integration services

 Integration of OFP in customer hardware and software system.

Hardware porting and optimization services

 Test, verification and optimization of silicon vendor ODP implementation together with OFP

Feature development services

 Pre-studying, specifying and implementing new OFP features and protocols.

Production test, maintenance and support services

 Production testing, release management and support.

Thank You
F o r a d d i t i o n a l i n f o r m a t i o n , p l e a s e v i s i t

w w w. o p e n f a s t p a t h . o r g

http://www.openfastpath.org/

