

OpenSAF in the Cloud. Why an HA Middleware is still needed

Anders Widell

Ericsson

Mathivanan NP

Oracle

opensaf.sourceforge.net

Agenda

- The OpenSAF Project
- High Availability and Service Availability
- Why Application HA is necessary in the cloud
- OpenSAF HA capabilities
- Proposal to leverage OpenSAF HA with existing cloud solutions for unified availability management
- OpenSAF roadmap

The OpenSAF project

- Most comprehensive Service Availability middleware providing availability, manageability and platform services for developing HA available applications
- Interface APIs in C with support for Java and Python bindings
- LGPL v2.1 license
- Implements SA Forum AIS specification
- Supported by the OpenSAF foundation

High Availability and Service Availability

- The probability that a service is available to its users at a random point in time
- In telecom, 99.999% availability (five nines) is often required
- HA and SA are essentially the same, but SA enables more – for example planned updates of hardware and software

Two Opinions about Application HA in the Cloud

You don't need to worry about HA – the cloud will take care of that for you The cloud doesn't change anything regarding HA – it is the same as outside the cloud

High Availability and Service Availability

Hardware Faults

- The cloud infrastructure can handle hardware faults for you – all the application sees is a node reboot
- With a hot standby VM, even a reboot may be avoided
- Problem with co-located VMs we don't want to have active and standby app on the same physical node

Software Faults

 Applications currently have no or limited HA support from cloud infrastructure

 Using HA middleware, we can also get shorter fail-over time in the event of a hardware fault

The Cloud Gives You More Faults

- Hypervisor and cloud infrastructure are also subject to faults
- Hardware used in cloud may be less reliable (not carrier grade)
- Geographic distribution may decrease the risk of total outage, at the cost of network latency and increased risk for split-brain

The cloud way – pets vs. cattle

- Pets: few powerful nodes, scale-up
- Cattle: many cheap nodes, scale-out
- "architecting for failure" vs "architecting for scale"

The cloud way – Standardized Service Level Agreement

Provide service throughout the year Your problem was triggered by some other vendor/service inside the cloud

Ο

OpenSAF based HA

- OpenSAF based HA solutions are applicable across the availability spectrum:
 - Enterprise
 - Telecom and aerospace/defense
 - Millisecond failover

OpenSAF based HA

OpenSAF based HA - Fault Management

• Detection - Component Health Checks, Active/Passive Monitoring, api based error reporting, resource agents

- Isolation Node Power off or Resource isolation
- Recovery Failover of role assignments to standby/spare resources
- Repair Automatic restart of failed resource

Notifications – Standardized state change notifications (and logging)

OpenSAF HA – Key Advantages

- Provide for Availability as a service in the cloud
- Centralized/Streamlined orchestration of workload management (maintaining affinity)
- Enable cloud software to be more carrier grade
- Ease of Integration With Both API based and scripts based entities (software, vm, agents, etc)

OpenSAF HA – Key Advantages

- Enables reliability for stateful applications
- Application level failure detection and recovery. Enables fault mitigation and milli second failover
- Support for automated rolling upgrades across the cluster involving application and cluster expansion/shrinking
- Pythonic interface for provisioning, status and management of HA entities. (Java mappings also supported)

Leveraging existing cloud solutions with OpenSAF

OpenSAF and Vmware (A study)

- Outage time measured with/without adding OpenSAF capabilities to existing VMware solutions (FT and HA)
- Outage time measurement by running OpenSAF within and outside the VMs and other combinations
- OpenSAF can detect Hardware, OS and Application failures
- The study concluded that outage time significantly reduced when combining OpenSAF with existing Vmware capabilities

Reference: Ali Nikzad's thesis: 'OpenSAF and Vmware: From the perspective of HA' http://spectrum.library.concordia.ca/978013/4/Nikzad_MASc_S2014.pdf

Leveraging openstack and OpenSAF

- OpenSAF can provide HighAvailability as a service in openstack – Uniform, centralized, automated availability management across openstack
- Openstack's flexible deployment architectures enables easy integration with OpenSAF for all redundancy configurations for any of the OpenStack infrastructure software (distributed and standalone)
- Monitoring (Intrusive and Non-Intrusive) a basic requirement
 - With/Without Resource agents.
- Provide for a perspective of TRY_AGAIN /TIME_OUT semantics

OpenSAF provides for a Unified HA

OpenSAF Roadmap

- Enhanced cluster management (quorum/consensus based membership)
- Scaling out even further
- Feature rich CLI
- Container contained

& Thank You