

Full re-deployment for each new generation.

Network Architecture Transformation Towards NFV

Application

Proprietary Hardware Platform

Application

Proprietary Hardware Platform

Application

Proprietary Hardware Platform

SDN - 2 lines

- 1. SDN: freedom of ability to create any networks and their overlays
- 2. Troll: is an Openflow HW/ASIC switch a SDN equipment?
 - How to support any new "what if"? => wait and buy a new switch

SDN != NFV , but SDN can be made of VNF & NFVI

... but SysOps/DevOps virtualizing their networks...

Where is my network performance?

"It's time we face reality, my friends. ... We're not exactly rocket scientists."

Performance first

High Performance East-West Communications

Virtual Machine

Application

Linux

Virtual Machine

Application

Windows

Virtual Machine

Application

Any

Virtual Machine

Application

Any

Hypervisor

Throughput

Virtual Switch Hardware Independence

v9.3 | 10 ©6WIND 2014

What if SRIOV?

or what if XYZ PCI passthru technologies?

High Performance East-West Communications

Virtual Machine

Application

Linux

Virtual Machine

Application

Windows

Virtual Machine

Application

Any OS Virtual Machine

Application

Any OS

Hypervisor

Throughput SR-IOV Hardware independence

Data Center Virtualization Use Case

 Number of VMs is limited by virtual switching / networking capacity in both compute and network nodes

NFV / ETSI Simplified Architecture

Network Function Virtualization Use Case

 VNF (North-South) and service chain (East-West) throughput is limited by Linux virtual switching / networking capacity

Appliance Virtualization Use Case

- Appliance is based on specialized architectures
 - Rigid
 - High development costs
 - Long TTM

Typical NFV Performance Bottlenecks

6WINDGate for Industry-Leading Processor Platforms

Architecture-independent "Fast Path Modules"

- · Generic, processor-independent source code
- Cycle-level and pipeline-level optimizations

Architecture-specific "Fast Path Networking SDK"

- Zero-overhead API for fast path modules
- Support for processor-specific features and resources
- Leverages processor suppliers' SDKs

Linux Compatibility is Critical Linux Acceleration via 6WINDGate

 Standard Linux functions are accelerated by 6WINDGate

Neutron's protocols – strong needs for a fast path

Say no to proprietary plugins
Say no to SRIOV to be SDN ready.

Accelerate Neutron

6WINDGate Extensions to Virtualization

Virtual
Appliance
(DPDKbased)

Fast
vNIC
PMD

Virtio
Guest
PMD

Virtual
Appliance
(Linuxbased)

Fast
vNIC
Linux
Virtio
Guest
Linux

Virtual
Appliance
(Other
OSs)

Fast
VIIC

Virtio
Guest

Drivers for Virtual Appliance

- 6WIND drivers for high performance communications
- Standard drivers for existing Virtual Appliances
- Extensible for all OSs

Virtual Acceleration

- 6WIND drivers for high performance communications
- Accelerated virtual switch and bridging
- · Extended network services
- Dpdk.org with multi-vendor NIC support

6WIND Virtual Accelerator in OpenStack Compute Node

- 240Gbps 6WIND Virtual Accelerator throughput on 12 cores of Xeon E5-2697 v2
 @ 2.70GHz
- 1 core provides a 20Gbps Virtual Accelerator bandwidth
- Examples on a dual socket / 24 cores server
 - 120Gbps North-South traffic delivered to standard
 VMs or VNFs with 12 cores remaining for VMs
 - 40Gbps North-South traffic with 20 cores remaining for VMs
 - 40Gbps North-South traffic and 160 Gbps East-West traffic for service chaining with 3 Turbo Boosted VNFs

6WIND Virtual Accelerator in OpenStack Network Node

- 255Gbps 6WIND Virtual Accelerator
 throughput on 8 cores of Xeon E5-2697 v2 @
 2.70GHz
- 1 core provides a 30 Gbps Virtual
 Accelerator bandwidth

Examples

- 40Gbps North-South traffic on a dual socket / 24 cores server hosting both Network and Compute Node on 6 cores, with 18 cores remaining for VMs
- 240Gbps North-South traffic on a single socket / 8 cores server feeding six 40Gbps Compute Nodes, each hosting a 3 Turbo Boosted VNFs service chain

Data Center Virtualization Use Case

 Number of VMs is limited by virtual switching / networking capacity in both compute and network nodes

 6WIND Virtual Accelerator removes Linux performance bottlenecks and enables high VM density without any change to the environment

Network Function Virtualization Use Case

 VNF (North-South) and service chain (East-West) throughput is limited by Linux virtual switching / networking capacity

 6WIND Virtual Accelerator removes Linux performance bottlenecks and maximizes North-South and East-West throughput with higher VNF density without any change to the environment

Appliance Virtualization Use Case

- Appliance is based on specialized architectures
 - Rigid
 - High development costs
 - Long TTM

6WIND Virtual Accelerator removes
 Linux networking performance
 bottlenecks on standard servers and enables flexibility brought by virtualization

6WINDGate NFVI + VM Performance Comparison

Test 1: Standard Open vSwitch + Virtio

L2 Throughput

7.2 Gbps

Limited Bandwidth To Linux Based Virtual Machines

12 x 10G Ports

Test 2: 6WINDGate OVS Acceleration + Fast vNIC Linux

L2 Throughput

7.2 Gbps59.2 Gbps

9X Throughput Performance Increase

Test 3: 6WINDGate OVS Acceleration + Fast vNIC PMD

L2 Throughput

7.2 Gbps59.2 Gbps118.4 Gbps

Wire Speed Performance

12 x 10G Ports

Compute nodes with 6WINDGate, Openstack-horizon

Compute node/host:
yum install 6windgate*.rpm
systemctl enable 6windgate.service

6WIND Virtual Accelerator Performance Summary

For Data Center Virtualization

For Appliance Virtualization

For Network Function Virtualization

- Servers are dual socket Xeon E5-2697 v2
 @ 2.70GHz (12 cores per socket)
- Independently of HW constraints (number of ports per socket for example)

The OEM Advantage

Unlock Hidden Performance Reduce Time-To-Market Enable Transition To SDN / NFV

Increase Data Plane Performance
No Change To Linux Environments
Portable Across All Major Platforms
Support Extensive Set Of Protocols

L2-L4 Acceleration
IPsec VPN Gateways
TCP / UDP Termination
Virtual Switching
DPDK

backup

Virtual Accelerator Lowest Latency and Flexible Chaining

6WINDGate Virtual Accelerator

- Hardware independent virtual switching (NIC driver)
- Aggregate 500 Gbps bandwidth with low latency
- No external limit to number of chained VNFs.
- DPDK ready

Physical Switching Limitations

- Hardware dependent switching (SR-IOV, RDMA, NIC embedded switching)
- Throughput is limited by PCI Express (50 Gbps) and faces PCI Express and DMA additional latencies
- Available PCI slots limit the number of chained VNFs
- At 30 Gbps a single VNF is supported per node!

Introduction to NFV & and why Openstack – 1 slide

NFV = Network Function Virtualization

How do I spawn a VM that is an IPsec router, that is a L2TP/DSL (LNS) server, that is a firewall, etc...? Instead of using a physical HW?

You need network cables ...

- Network cables => NFVI Network Function
 Virtualization Infrastructure
 - It provides interconnect between the physical cables and the virtual network equipments that are spawned
 - L2 switch, L3 switch, ACL/Switch

... and network equipments

- Network Function (equipments) => Virtualized =>VNF Virtual Network Function (vNF)
 - vIPsec, vBRAS, vRouter, vFirewall, vXXX

- Openstack provides the framework to spawn Virtual Machines
- Virtual Machines can have multiple virtual network interfaces (vmxnet3, virtio) per VM
 - vm1# ip link show | grep virtio | wc –l
- Any VMs with mutiple network interfaces can be any network nodes
 - IPsec, Firewall, Proxy
- To some extends, the VMs are the containers of the <u>VNF</u>
 - run vIPsec, vFirewall, vProxy
- Openstack/Neutron and Openstack/Nova VIF drivers provides the automations of the provisioning for interconnecting the VMs
 - vhost/tuntap, brctl, OVS, L3/routes
- To some extends, this software interconnect of VMs is the <u>NFVI</u>

©6WIND 2014