
OpenWhisk on Mesos
Tyson Norris/Dragos Dascalita Haut, Adobe Systems, Inc.

OPENWHISK ON MESOS

SERVERLESS BACKGROUND

OPERATIONAL EVOLUTION

SERVERLESS BACKGROUND

CUSTOMER FOCUSED
DEVELOPMENT

SERVERLESS BACKGROUND

CUSTOMER FOCUSED
EXTENSIONS

A DEMO

ALEXA SKILLS - A SERVERLESS USE CASE

▸ Demo

▸ Associate Alexa skills with serverless functions

EXTENDING ADOBE ANALYTICS WITH ALEXA

 Runtime “How many page views
this month ?”

I feel like we should speak maybe for a 3-4
minutes why do we care so much about
serverless and end that with this demo, and
then get into more details of how.

WDYT ? I could cover the motivation part too.

Tyson: not just why server less is important for
us, but also “why running your own
platform” (Serverless infrastructure vs app
specific server less)

SERVERLESS BACKGROUND

INSIDE OPENWHISK

ORIGINAL WHISK

OPENWHISK

▸ “Apache OpenWhisk is a serverless, open source cloud platform that executes functions
in response to events at any scale.”

▸ Or: functions in docker containers

▸ And: CLI + API = function management

ORIGINAL WHISK

OPENWHISK CONCEPTS

▸ Controller + Invoker

▸ Execution flow

ORIGINAL WHISK

OPENWHISK SCALING

▸ Add an Invoker

▸ Invoker will advertise itself via Kafka

▸ Controller will register it and monitor its health

But…

▸ We’re a Mesos shop.

▸ We don’t want competing cluster (or container) managers

▸ Can I use mesos to manage the cluster?

▸ Can I use mesos to control my containers that invoke actions?

YES! 
WITH SOME MINOR CHANGES

MESOS FRAMEWORKS

HOW TO MESOS IN AKKA

▸ OpenWhisk is an Akka application (Scala)

▸ OpenWhisk uses docker to launch containers

▸ Put a Mesos Actor in there!

But…

▸ What Mesos Actor?

MESOS FRAMEWORKS

MESOSIFICATION IN 3 STEPS

▸ Build a Mesos Actor

▸ Make OpenWhisk extensible

▸ Launch Mesos Tasks

MESOS ACTOR

A MESOS ACTOR IN AKKA

▸ Existing libraries didn’t fit (Scala, HTTP API)

Let’s build a new one!

▸ Akka HTTP + Akka Streams

▸ https://github.com/adobe-apiplatform/mesos-actor

https://github.com/adobe-apiplatform/mesos-actor

MESOS ACTOR

A MESOS ACTOR IN AKKA

▸ Mesos HTTP + Protobuf messages -> Scala classes + Akka Messages

MESOS ACTOR

A SHORT DEMO

▸ Mesos cluster using docker-compose

▸ SampleFramework

▸ TaskMatcher - matching pending tasks to offers - default is “first match”

▸ TaskBuilder - building TaskInfo protobuf from requirements - default is “verbatim”

▸ K.I.S.S. - A simplified interface to Mesos task launching

▸ DEMO

PENDING WORK

MESOS-ACTOR TODO

▸ Framework ID persistence (zookeeper, etc)

▸ Reconcile on startup (next update received will reset tasks)

▸ HA (multiple framework instances, leader election, shared
task state - based on Akka Clustering)

▸ Multi-master redirect (redirect to current leader)

▸ Re-subscribe after disconnect (in master/framework failover)

▸ Mesos roles

BACK TO OPENWHISK

A SERVERLESS PLATFORM ON MESOS

▸ YOUR servers

▸ YOUR Mesos cluster

▸ Operators expand/contract Mesos cluster

▸ OpenWhisk Alterations

▸ Controller - none

▸ Invoker - ContainerFactory

OPENWHISK CHANGES

INVOKER - BEFORE

OPENWHISK CHANGES

OPENWHISK INVOKER

▸ Invoker changes

▸ Deploy: 1 per cluster (instead of 1 per host!)*

▸ Configure: MesosContainerFactory SPI (instead of DockerContainerFactory)

▸ Configure: LogDriverLogStore SPI (instead of DockerLogStore)

* HA? Details later

OPENWHISK CHANGES

INVOKER - AFTER

AKKA CLUSTER

HA IN THE AKKA CLUSTER

AKKA CLUSTER

1. AKKA CLUSTER

▸ Shared container state

▸ All cluster nodes have visibility to same container pool

▸ 1 leader

▸ Single leader is responsible for streaming Mesos
messages from master

AKKA CLUSTER

2. FRAMEWORK FAILOVER

▸ Shared container state

▸ Containers remain when scheduler stream is interrupted

▸ New Containers cannot be created until new scheduler instance resumes

▸ Mitigate downtime with “prewarm containers”

▸ 1 leader

▸ New leader is elected by Akka

▸ New leader will create new subscription to Mesos master with the same
FrameworkID

▸ Reconcile existing tasks

▸ Resume managing containers

OPENWHISK CHANGES

OPENWHISK DETAILS

OPENWHISK CHANGES

OPENWHISK ALTERATIONS

▸ SPI - service provider interface: “Service Provider
Interface (SPI) is an API intended to be implemented or
extended by a third party. It can be used to enable framework
extension and replaceable components.”

trait ContainerFactory {
 def createContainer(tid: TransactionId,
 name: String,
 actionImage: ExecManifest.ImageName,
 userProvidedImage: Boolean,
 memory: ByteSize)(implicit config: WhiskConfig,
 logging:Logging): Future[Container]
}

trait LogStore {
 def containerParameters: Map[String, String]
 def logs(activation: WhiskActivation): Future[ActivationLogs]
 def collectLogs(container:Container, action: ExecutableWhiskAction)
 (implicit transid: TransactionId): Future[Vector[String]]
}

OPENWHISK CHANGES

OPENWHISK ALTERATIONS

▸ ContainerFactory SPI (PR#2659)

▸ MesosContainerFactory (coming soon)

▸ LogStore SPI (PR#2695)

▸ SplunkLogStore

