

Optimizing Linux Servers

Davor Guttierrez
dguttierrez@me.com
3 Gen d.o.o.

mailto:dguttierrez@me.com

Davor Guttierrez

3 Gen d.o.o

since 1996

located in Ljubljana; Slovenia

33 employees

large IBM mainframe systems and

UNIX-oriented systems along with databases

more on www.3Gen.si or facebook.com/3GenSI

http://www.3Gen.si/

Agenda

● What is optimization?
● Performance (software / hardware)
● Server optimization
● Performance monitoring
● System Monitoring Tools
● Benchmarking Tools

What is optimization?

● Our server is slow

● we have new very expensive server but ...
● we have new Linux distribution but ...

● What is slow in your server?

● too many services running, ...
● disk, I/O, network configuration, ...

Performance

To boost performance of a server, we
need just both its hardware and
software components to make it

operate efficiently.

Server optimization

Optimization can include fine tuning of

● web servers (Apache, lighttpd, nginx etc),

● disk I/O, block devices, RAID or different filesystems (including SCSI and SSD devices),

● kernel,

● network I/O, TCP/IP network stack,

● firewall etc.

as well as

● databases optimization – benchmarking and profiling, finding bottlenecks,

settings optimization;

● data storages tuning;

● disk and memory usage optimization

Start here … with installation

● Always make custom installation of server, don't use default
settings and default install

● Custom partitioning,multiple file systems, ...

● Install only needed packages, never install whole group of
packages – make minimal installation and then add
packages

● You don't need X Window and GNOME on your server or
you do?

● Console is 80x25 characters long and not 1024x768

Performance monitoring

● Linux system administrators should be proficient in Linux
performance monitoring and tuning.To identify system
bottlenecks and come up with solutions to fix it, you should
understand how various components of Linux works.

● On a very high level, following are the four subsystems that
needs to be monitored:
– CPU

– Network

– I/O

– Memory

CPU

● You should understand the four critical performance
metrics for CPU

– context switch,

– run queue,

– cpu utilization,

– load average.

Context Switch

● When CPU switches from one process (or thread) to another, it
is called as context switch

● When a process switch happens, kernel stores the current
state of the CPU (of a process or thread) in the memory

● Kernel also retrieves the previously stored state (of a process
or thread) from the memory and puts it in the CPU

● Context switching is very essential for multitasking of the CPU
● A higher level of context switching can cause performance

issues

Run queue

● Run queue indicates the total number of active
processes in the current queue for CPU

● When CPU is ready to execute a process, it picks it up
from the run queue based on the priority of the process

● Processes that are in sleep state, or I/O wait state are
not in the run queue

● A higher number of processes in the run queue can
cause performance issues

CPU Utilization

● This indicates how much of the CPU is currently
getting used

● This is fairly straight forward, and you can view the
CPU utilization from the top command

● 100% CPU utilization means the system is fully
loaded

● A higher % of CPU utilization will cause performance
issues

LOAD average

● This indicates the average CPU load over a specific time period.

● On Linux, load average is displayed for the last 1 minute, 5 minutes,
and 15 minutes. This is helpful to see whether the overall load on the
system is going up or down.

● Load average of “0.25 1.20 1.90″ indicates that the load on the
system is coming down. 0.25 is the load average in the last 1 minute.
1.20 is the load average in the last 5 minutes. 1.90 is the load
average in the last 15 minutes.

● This load average is calculated by combining both the total number
of process in the queue, and the total number of processes in the
uninterruptable task status.

Disk I/O optimization

● Linux currently ships with four different I/O schedulers. They are: deadline, noop,
anticipatory, and cfq. There are many differences between these scheduling
algorithms:

● CFQ: This is the default algorithm in most Linux distributions. It attempts to distribute
all I/O bandwidth evenly among all processes requesting I/O. It is ideal for most
purposes.

● NOOP: The noop algorithm attempts to use as little cpu as possible. It acts as a basic
FIFO queue expecting the hardware controller to handle the performance operations
of the requests.

● Anticipatory: This algorithm attempts to reorder all disk I/O operations to optimize disk
seeks. It is designed to increase performance on systems that have slow disks.

● Deadline: This scheduling algorithm places I/O requests in a priority queue so each is
guaranteed to be ran within a certain time. It is often used in real-time operating
systems.

System scheduler … how to change

● cat /sys/block/sda/queue/scheduler

change it with:

● echo noop > /sys/block/sda/queue/scheduler

in SuSE Linux via YaST ...

More about System scheduler

● Changing schedulers on the fly allows you to test and
benchmark the algorithms for your specific application

● Once the change is issued, any current I/O operations will
be executed before the new scheduler goes into effect, so
the change will not be instant

● Also remember that once one is set and performs to your
liking, be sure to set the change to be applied on
subsequent reboots

And a little bit more ...

● It is often recommend to use noop or deadline on any
SSD drive

● There is usually no definitive answer to which algorithm to
use

● Benchmarking each one will be your best option
● There are cases where cfq may not be the best scheduler

for your system or application
● An example is if you are running a RAID disk array with a

caching raid controller

I/O optimization

● I/O wait is the amount of time CPU is waiting for I/O. If you
see consistent high i/o wait on you system, it indicates a
problem in the disk subsystem.

● You should also monitor reads/second, and writes/second.
This is measured in blocks. i.e number of blocks read/write
per second. These are also referred as bi and bo (block in
and block out).

● tps indicates total transactions per seconds, which is sum
of rtps (read transactions per second) and wtps (write
transactions per seconds).

Disk I/O optimization

● Filesystem to use:

– EXT2
– EXT3

– ReiserFS

– EXT4

– BTRFS

Use FS options in fstab (noatime, ...)

Disk I/O optimization

● RAID (software or hardware)

– RAID0

– RAID1

– RAID5 (not recomended)

– RAID10

Disk optimization

● Use benchmark programs like Bonnie++

● Use hdparm

● Upgrade BIOS of your server and Firmware of your disk

● Does your disk park heads?

Network Tuning

● A good understanding of TCP/IP concepts is helpful
while analyzing any network issues.

● For network interfaces, you should monitor total
number of packets (and bytes) received/sent through
the interface, number of packets dropped, etc.,

TCP Tuning

For servers that are serving up huge numbers of concurent sessions, there are some tcp options that
should probabaly be enabled. With a large # of clients doing their best to kill the server, its probabaly
not uncommon for the server to have 20000 or more open sockets.

Allows more local ports to be available

echo 1024 65000 > /proc/sys/net/ipv4/ip_local_port_range

Increasing the amount of memory associated with socket buffers can often improve performance

echo 262143 > /proc/sys/net/core/rmem_max

echo 262143 > /proc/sys/net/core/rmem_default

These reduce the amount of work the TCP stack has to do, so is often helpful in this situation

echo 0 > /proc/sys/net/ipv4/tcp_sack

echo 0 > /proc/sys/net/ipv4/tcp_timestamps

TCP Tuning (10GB NIC)

increase TCP max buffer size settable using setsockopt()

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

increase Linux autotuning TCP buffer limit

net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

increase the length of the processor input queue

net.core.netdev_max_backlog = 30000

recommended default congestion control is htcp

net.ipv4.tcp_congestion_control=htcp

recommended for hosts with jumbo frames enabled

net.ipv4.tcp_mtu_probing=1

TCP Congestion Avoidance
Algorithms

● reno: Traditional TCP used by almost all other operating
systems. (default)

● cubic: CUBIC-TCP
● bic: BIC-TCP
● htcp: Hamilton TCP
● vegas: TCP Vegas
● westwood: optimized for lossy networks

Which do u use?

davorg@kranch:~$ sudo sysctl net.ipv4.tcp_available_congestion_control

net.ipv4.tcp_available_congestion_control = cubic reno

Memory Optimization

● If you have 16 GB RAM installed on your system, you have 16
GB of physical memory

● Virtual memory = Swap space available on the disk + Physical
memory. The virtual memory contains both user space and
kernel space

● Using either 32-bit or 64-bit system makes a big difference in
how much memory a process can utilize

● On a 32-bit system a process can only access a maximum of
4GB virtual memory

● On a 64-bit system there is no such limitation

More about Memory optimization ...

● Unused RAM will be used as file system cache by the kernel
● Linux system will swap when it needs more memory. i.e when it needs

more memory than the physical memory
● When it swaps, it writes the least used memory pages from the physical

memory to the swap space on the disk
● Lot of swapping can cause performance issues, as the disk is much

slower than the physical memory, and it takes time to swap the memory
pages from RAM to disk

Memory optimization

● Dense Memory (Hardware specific)
● NUMA (Non Uniform Memory Access)
● Huge Pages
● Manage Virtual Memory pages

– Flushing of dirty pages

– Swapping behavior

NUMAD

● User-level daemon to automatically improve out of the box NUMA system
performance

● Fedora 17
● RHEL 6.3 as tech preview
● Not enabled by default

● Monitors available system resources on a per-node basis and assigns significant
consumer processes to aligned resources for optimum NUMA performance.

● Rebalances when necessary
● Provides pre-placement advice for the best initial process placement and

resource affinity.

Huge Pages

● 2M pages vs 4K standard linux page
● Virtual to physical page map is 512 times smaller
● TLB can map more physical pages, resulting in fewer misses
● Traditional Huge Pages always pinned
● Transparent Huge Pages in RHEL6
● Most databases support Huge pages
● 1G pages supported on newer hardware

How to configure Huge Pages (16G)

 echo 8192 > /proc/sys/vm/nr_hugepages

 vi /etc/sysctl.conf (vm.nr_hugepages=8192)

Flushing Caches

● Drop unused Cache
● Frees unused memory
● File cache
● If the DB uses cache, may notice slowdown

● Free pagecache

 echo 1 > /proc/sys/vm/drop_caches
● Free slabcache

 echo 2 > /proc/sys/vm/drop_caches
● Free pagecache and slabcache

 echo 3 > /proc/sys/vm/drop_caches

Swappiness

● Controls how aggressively the system reclaims
“mapped” memory:

● Default - 60%
● Decreasing: more aggressive reclaiming of

unmapped pagecache memory
● Increasing: more aggressive swapping of mapped

memory

80/20

● Remember the 80/20 rule

80% of the performance improvement comes from
tuning the application, and the rest 20% comes from
tuning the infrastructure components.

System Monitoring Tools

● vmstat
● netstat
● ps
● top
● atop, htop
● mtop
● Iostat
● xosview

Kernel Tuning

● Recompile your kernel

● Exclude unneeded modules

● Use RealTime kernel

● Make kernel smaller

●

Samba tuning

● enable AIO (EXTREME)
● socket options = TCP_NODELAY

IPTOS_LOWDELAY SO_RCVBUF=65536
SO_SNDBUF=65536

● raw read and write
● oportunistic lokcing
● log level

Database optimization

● MySQL – use MySQL tuning App
● Optimize table
● Do you use InnoDB or MyISSAM DB?
● Change database if possible

OpenLDAP Tuning

● The most important tuning aspect for OpenLDAP is deciding what attributes
you want to build indexes on.

Cachesize 10000
dbcachesize 100000
sizelimit 10000
loglevel 0
dbcacheNoWsync

index cn,uid
index uidnumber
index gid
index gidnumber
index mail

● If you add the following parameters to /etc/openldap/slapd.conf before entering the info
into the database, they will all get indexed and performance will increase.

Apache Tuning

Make sure you starting a ton of initial daemons if you want good benchmark scores.

Something like:

MinSpareServers 20
MaxSpareServers 80
StartServers 32

this can be higher if apache is recompiled

MaxClients 256
MaxRequestsPerChild 10000

Note: Starting a massive amount of httpd processes is really a benchmark hack. In most real world cases, setting
a high number for max servers, and a sane spare server setting will be more than adequate.
It's just the instant on load that benchmarks typically generate that the StartServers helps with.

Slow websites

● Use optimizers
● Use memcache
● Tune your apache
● Minimize number of Apache modules
● Change Apache for Nginx

Benchmark

● A good set of benchmarking utilities are often very
helpful in doing system tuning work. It is impossible
to duplicate "real world" situations, but that isnt really
the goal of a good benchmark.

● A good benchmark typically tries to measure the
performance of one particular thing very accurately.

● If you understand what the benchmarks are doing,
they can be very useful tools.

Benchmark Tools

● bonnie++ - is a free file system benchmarking tool for Unix-like operating
 systems

● DBench - is a tool to generate I/O workloads to either a filesystem or to a
 networked CIFS or NFS server

● http_load - runs multiple http fetches in parallel, to test the throughput of a
 web server

● dkftpbench - measuring how many simultaneous dialup users can be down
 loading from an FTP site at the same time

● tiobench - is a multi-threaded I/O benchmark
● ttcp - is a utility program for measuring network throughput
● netperf – network performance tester

Identify and solve performace issue

● Understand the problem
– Half of the problem is solved when you clearly understand what

the problem is.

● Monitor and collect data
– After defining the problem clearly, monitor the system and try to

collect as much data as possible on various subsystems

● Eliminate and narrow down issues
– After having a list of potential issues, dive into each one of them

and eliminate any non issues

● Make one change at a time
– don’t try to make multiple changes at one time

TNX ...

● E-mail: dguttierrez@me.com
● Company: www.3Gen.si
● Blog: www.d-mashina.net
● CV: www.guttierrez.org

http://www.d-mashina.net/
http://www.guttierrez.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

