
Qt5 & Yocto:
SDK and app migration

Denys Dmytriyenko

LCPD, Arago Project

Texas Instruments

2

Agenda
● Qt history in OpenEmbedded

● Qt4/5 usage in OE/Yocto

● Building and packaging filesystem images

● Qt SDK basics

● Qt5 SDK usage

● App migration between Qt4 and Qt5

3

Qt history in OpenEmbedded
● Classic OpenEmbedded

– qte, qtopia, Qt Extended, OPIE...

– qt-x11-free – Qt 3 for X11

– Qt 4 – X11 and Embedded

● OpenEmbedded-Core

– qt4-x11 and qt4-embedded (in OE-Core, proposal to separate)

– Qt3 in meta-qt3:

● http://git.yoctoproject.org/cgit/cgit.cgi/meta-qt3

– Qt5 in meta-qt5:

● http://github.com/meta-qt5/meta-qt5

4

meta-qt5 layer

● A separate layer on GitHub

● Maintained by Martin Jansa and Otavio Salvador

● https://github.com/meta-qt5/meta-qt5

5

Using Qt4

● BBLAYERS += “.../openembedded-core/meta” in
conf/bblayers.conf

● inherit qt4e or qt4x11

● Qt4 is monolithic and builds everything in single recipe

– Application's build dependencies are handled
automatically

– May need to RRECOMMENDS or otherwise install
plugins and other pieces on the target

6

Using Qt5
● Depends on openembedded-core/meta and meta-

openembedded/meta-ruby

● In conf/bblayers.conf:

BBLAYERS += “ \

…/meta-qt5 \

…/meta-openembedded/meta-ruby \

…/openembedded-core/meta”

● inherit qmake5

● PACKAGECONFIG in qtbase controls “USE” flags and external
dependencies of the build

● Very modular, so need to DEPENDS on necessary components, e.g.
qtdeclarative, qtmultimedia, qtwebkit, etc.

7

Bundle Qt4 in images

● Qt4 build creates large number of packages – libraries, plugins,
fonts etc.

– Very granular and can reduce overall size of the image

– May be tedious to list all the necessary packages for the image

– With Debian naming enabled, most libraries are renamed, others are not:

● libqt-embeddedcore4

● libqt-embeddedmultimedia4

● libqt-embeddedopengl4

● qt4-embedded-qml-plugins

● qt4-embedded-plugin-imageformat-jpeg

– Library dependencies are handled by OE automatically, plugins and data
need explicit manual listing in packagegroup or image

8

Bundle Qt5 in images

● Since Qt5 project is modular on its own, only required
packages are built

● Still need to handle plugins and other data manually in
packagegroup or image:

– qtbase-plugins

– qtwebkit-qmlplugins

– qtwebkit-examples-examples

9

Qt SDK basics

● Set of host tools, target libraries and header files for
cross-compiling applications on the host system outside
of OpenEmbedded/Yocto to be used on the target

● OE-built SDK comes with environment-setup script to
set all the environment variables necessary to use the
provided sysroots and drive the cross-compilation

10

Qt4 SDK

● Standard meta-toolchain-qt and meta-toolchain-qte
recipes, based on meta-toolchain for building and
packaging toolchains/SDKs

● Alternatively, bitbake -c populate_sdk for the rootfs
image will generate an SDK with corresponding *-dev
and *-dbg packages

11

Qt5 SDK

● Mostly developed in meta-arago for TI SDK in late 2013

● Upstreamed to meta-qt5 layer in early 2014

– Thanks to Otavio for provided reviews and help

● Similarly, supports bitbake -c populate_sdk as a main
way of building and packaging SDK

● Legacy method of meta-toolchain-qt5 is also supported

12

Using Qt SDK
● Install a self-extracting *.sh file from a deploy/sdk

directory on your host system

● Source the environment-setup script

● Run qmake helloworld.pro to generate a Makefile from
Qt project file

● Run GNU make to cross-compile the application

● All the magic to use the correct cross-compilation
toolchain, target libraries and headers is done behind
the scene!

13

Application migration
● Arago Project comes with few sample Qt applications

for demonstrating some of the capabilities.

● Need to re-use the same sample Qt apps on either Qt4
or Qt5 systems

● Implemented some mechanisms to migrate existing Qt
app recipes to be buildable against Qt4 or Qt5 libraries

● Introduce and discuss qt-provider and qt-vars classes
from meta-arago

14

Application migration (cont)
qt-provider.bbclass

– QT_PROVIDER variable selects which Qt version is being used - “qt5”,
“qt4e”, “qt4x11” etc.

– Based on that, necessary classes are inherited and other setup steps
performed – inherit qt4e etc.

qt-vars.bbclass

– Defines a set of variables to be used in DEPENDS and RDEPENDS
statements

● QT_DEPENDS_BASE is qtbase for qt5 and qt4-embedded for
qt4e

● QT_DEPENDS_WEBKIT is qtwebkit for qt5 and empty for qt4e

● QT_RDEPENDS_FONTS is qtbase-fonts for qt5 and
qt4-embedded-fonts for qt4e

15

Application migration (cont)
● There may be some sources and Makefile modifications required

per Qt5 Migration Guide -
http://qt-project.org/wiki/Transition_from_Qt_4.x_to_Qt5

● Replace QtGui include with QtWidgets:

-#include <QtGui>

+#include <QtWidgets>

● Replace QString fromAscii()/toAscii() with fromLatin()/toLatin():

-m_cityId = parseCityInfo(QString::fromAscii(data));

+m_cityId = parseCityInfo(QString::fromLatin1(data));

● May need to add to the .pro project file:

QT += widgets

http://qt-project.org/wiki/Transition_from_Qt_4.x_to_Qt5

16

Sample recipe

DESCRIPTION = "Qt Demo"
LICENSE = "BSD"
LIC_FILES_CHKSUM = "file://LICENSE;md5=93a105adb99011afa5baee932b560714"

inherit qt-provider

DEPENDS += "${QT_DEPENDS_SVG} ${QT_DEPENDS_SCRIPT}"
QT_DIFF = " \
file://0001-Replace-QtGui-with-QtWidgets-per-Qt5-migration-guide.patch \
file://0002-Replace-fromAscii-toAscii-with-fromLatin1-toLatin1-p.patch"

SRC_URI = "git://gitorious.org/qt-demo/qt-demo.git;protocol=git"

SRC_URI += "${@base_conditional('QT_PROVIDER','qt5',${QT_DIFF},'',d)}"

17

Thank you

Q&A

	External Pre-built Binary Toolchains in Yocto Project
	3rd Party Toolchains
	Existing Support
	Using CodeSourcery
	Slide 5
	Using Linaro
	Adding Own, e.g. Arago
	Slide 8
	TCLIBC
	Issues/Limitations
	Packaging SDK, Config
	Packaging SDK, Recipe
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Thank you

