
Apache Rya: A Scalable

RDF Triple Store

Adina Crainiceanu, Roshan Punnoose, David Rapp,

Caleb Meier, Aaron Mihalik, Puja Valiyil, David Lotts, Jennifer

Brown

RDF Data

 Very popular

 Based on making statements about

resources

 Statements are formed as triples

(subject-predicate-object)

 Example, “The sky has the color blue”
 Subject = The sky

 Predicate = has color

 Object = blue

Problem * * * * *

 W3C standard

 Large community/tool support

 Easy to understand

 Intrinsically represents a labeled, directed

graph

 Unstructured

 Though with RDFS/OWL, can add structure

Why RDF?

Problem * * * * *

The sky Blue

hasColor

Why Not RDF?

 Storage

 Stores can be large for small amounts of data

 Speed

 Slow to answer simple questions

 Scale

 Not easy to scale with size of data

Problem * * * * *

Apache Rya
–Distributed RDF Triple Store

 Smartly store RDF data in Apache

Accumulo

 Scalability

 Load balance

 Build on the RDF4J interface

implementation for SPARQL

 Fast queries

Problem * * * * *

Outline

 Problem

 Background

 Rya

 Triple index

 Performance enhancements

 Extra features

 Experimental results

 Conclusions and future work

RDF4J (OpenRDF Sesame)

 Utilities to parse, store, and query RDF data

 Supports SPARQL

 Ex: SELECT ?x WHERE {

?x worksAt USNA .

?x livesIn Baltimore . }

 SPARQL queries evaluated based on triple

patterns

 Ex: (*, worksAt, USNA)

Background * *

 Google BigTable implementation

 Compressed, Distributed, Scalable

 Adds security, row level authentication/

visibility, etc

 The Accumulo store acts as persistence

and query backend to OpenRDF

Apache Accumulo

Background * *

Outline

 Problem

 Background

 Rya

 Triple index

 Performance enhancements

 Additional features

 Experimental results

 Conclusions and future work

Architectural Overview - Rya

Rya * * * * * * * * * * *

Rya

Accumulo

Query Parsing

Initial Query

Execution Plan

Query Execution

RDF4J

Data

Storage

Query

Processing

SAIL SAIL

Triple Table Index

 3 Tables

 SPO : subject, predicate, object

 POS : predicate, object, subject

 OSP : object, subject, predicate

 Store triples in the RowID of the table

 Store graph name in the Column Family

Rya * * * * * * * * * * *

Triple Table Index - Advantages

 Take advantage of native lexicographical

sorting of row keys  fast range queries

 All patterns can be translated into a scan

of one of these tables

Rya * * * * * * * * * * *

Sample Triple Storage

Example RDF triple:

Stored RDF triple in Accumulo tables:

Rya * * * * * * * * * * *

Subject Predicate Object

Greta worksAt USNA

Table Stored Triple

SPO Greta, worksAt, USNA

POS worksAt, USNA, Greta

OSP USNA, Greta, worksAt

Triple Patterns to Table Scans

Triple Pattern Table to Scan

(Greta, worksAt, USNA) Any table (SPO default)

(Greta, worksAt, *) SPO

(Greta, *, USNA) OSP

(*, worksAt, USNA) POS

(Greta, *, *) SPO

(*, worksAt, *) POS

(*, *, USNA) OSP

(*, *, *) any full table scan

(SPO default)

Rya * * * * * * * * * * *

Query Processing

SELECT ?x WHERE {

?x worksAt USNA .

?x livesIn Baltimore. }

Rya * * * * * * * * * * *

…

rdf:type, Woman, Elsa

worksAt, Cisco, John

worksAt, Cisco, Zack

worksAt, USNA, Bob

worksAt, USNA, Greta

worksAt, USNA, John

worksAt, UW, Elsa

…

Step 1: POS – scan range

…

Bob, livesIn, Annapolis

…

Greta, livesIn, Baltimore

…

John, livesIn, Baltimore

…

Step 2: for each ?x, SPO – index lookup

…

Greta, commuteMethod,

bike

…

John, commuteMethod,

car

…

…

Bob, livesIn, Annapolis

…

Greta, livesIn,Baltimore

…

John, livesIn, Baltimore

…

More Complex Query Processing

Rya * * * * * * * * * * *

…

rdf:type, Woman, Elsa

worksAt, Cisco, John

worksAt, Cisco, Zack

worksAt, USNA, Bob

worksAt, USNA, Greta

worksAt, USNA, John

worksAt, UW, Elsa

…

Step 1: POS – scan range
Step 2: for each ?x, SPO –

index lookup
Step 3: For each

remaining ?x, SPO

Table lookup

SELECT ?x WHERE {

?x worksAt USNA.

?x livesIn Baltimore .

?x commuteMethod bike}

?x livesIn Baltimore?x worksAt USNA

?x commuteMethod bike

Query Processing using Inference

SELECT ?x WHERE { ?x rdf:type Person }

New query: SELECT ?x WHERE {

?type rdfs:subClassOf Person .

?x rdf:type ?type }

Rya * * * * * * * * * * *

Elsa Woman

rdf:type

Person

rdfs:subClassOf

rdf:type

Query Plan for Expanded Query

SELECT ?x WHERE {

?type rdfs:subClassOf Person.

?x rdf:type ?type . }

Rya * * * * * * * * * * *

…

…

…

…

rdfs:subClassOf, Person, Child

rdfs:subClassOf, Person, Man

rdfs:subClassOf, Person, Woman

…

…

Step 1: POS – scan range

…

rdf:type, Child, Bob

rdf:type, Child, Jane

…

rdf:type, Man, Adam

rdf:type, Man, George

rdf:type, Woman, Elsa

…

Step 2: For each ?type, POS – scan range

Inference Implementation

 Step 1. Materialize inferred OWL model

 As RDF triples in Rya (refreshed when OWL

model loaded/ changes)

 Uses MapReduce jobs to infer the relationships

or

 As Blueprint graph in memory (refreshed

periodically)

 Uses TinkerPop Blueprints implementation

 Step 2. Expand SPARQL query at runtime

Rya * * * * * * * * * * *

Challenges in Query Execution

 Scalability and Responsiveness

 Massive amounts of data

 Potentially large amounts of comparisons

Consider the Previous Example:

 Default query execution: comparing each “?x” returned from first statement

pattern query to all subsequent triple patterns

Poor query execution plans can result in simple

queries taking minutes as opposed to milliseconds

SELECT ?x WHERE {

?x livesIn Baltimore.

?x worksAt USNA .

?x commuteMethod bike}

SELECT ?x WHERE {

?x worksAt USNA.

?x livesIn Baltimore.

?x commuteMethod bike.}

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?x livesIn Baltimore.}

vs. vs.

Rya * * * * * * * * * * *

Outline

 Problem

 Background

 Rya

 Triple index

 Performance enhancements

 Additional features

 Experimental results

 Conclusions and future work

Rya Query Optimizations

 Goal: Optimize query execution (joins) to
better support real time responsiveness

 Approaches:

 Limit data in joins: Use statistics to improve
query planning

 Reduce the number of joins: Materialized
views

 Parallelize joins

 Accumulo Scanner /Batch Scanner use

 Time Ranges

Enhancements *

Optimized Joins with Statistics

 Collect statistics about data distribution

 Most selective triple evaluated first

 Ex:

Statistics * * * * * * *

Value Role Cardinality

livesIn Predicate 5mil

Baltimore Object 2.1mil

worksAt Predicate 800K

USNA Object 40K

SELECT ?x WHERE {

?x worksAt USNA.

?x livesIn Baltimore. }

SELECT ?x WHERE {

?x livesIn Baltimore .

?x worksAt USNA }
Vs.

Rya Cardinality Usage

 Maintain cardinalities on the following triple

patterns element combinations:

 Single elements: Subject, Predicate, Object

 Composite elements: Subject-Predicate,

Subject-Object, Predicate-Object

 Computed periodically using MapReduce

 Only store cardinalities above a threshold

 Only need to recompute cardinalities if the

distribution of the data changes significantly

Statistics * * * * * * *

Limitations of Cardinality Approach

 Consider a more complicated query

 Cardinality approach does not take into account
number of results returned by joins

 Solution lies in estimating the join selectivity for
each pair of triples

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?vehicle vehicleType SUV.

?x livesIn Baltimore.

?x owns ?vehicle.}

800K matches

20K matches

600K matches

1 mil matches

254 mil matches

Statistics * * * * * * *

Using Join Selectivity
Query optimized using

only Cardinality Info:

Query optimized using Cardinality

and Join Selectivity Info:

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?vehicle vehicleType SUV.

?x livesIn Baltimore.

?x owns ?vehicle.}

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?x livesIn Baltimore.

?x owns ?vehicle.

?vehicle vehicleType SUV. }

 Join selectivity measures number of results

returned by joining two triple patterns

 Due to computational complexity, estimate of join

selectivity for triple patterns is pre-computed and

stored in Accumulo

Statistics * * * * * * *

Join Selectivity: General

 For statement patterns <?x, p1, o1> and <?x, p2, o2>,

Full table join statistics precomputed and stored in index

Join statistics for each triple pattern computed using:

Use analogous definition if variables appear in predicate or

object position

Approach based on RDF-3X [NW08]

Statistics * * * * * * *

Use Join Selectivity in Rya

 Greedy approach: start with most selective triple

pattern and add patterns based on minimization of

a cost function

 C = leftCard + rightCard + leftCard*rightCard*selectivity

 C measures number of entries Accumulo must scan and

the number of comparisons required to perform the join

 Selectivity set to one if two triple patterns share no

common variables, otherwise precomputed

estimates used
 Ensures that patterns with common variables are grouped

together

Statistics * * * * * * *

Pre-Computed Joins

 Reduce number of joins by pre-computing

common joins
 Approach based on: Heese, Ralf, et al. "Index Support for

SPARQL." European Semantic Web Conference,

Innsbruck, Austria. 2007.

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?x livesIn Baltimore.

?x owns ?vehicle.

?vehicle vehicleType SUV.

}

Pre-compute using

batch processing

and look up during

query execution

Views * *

Using Pre-Computed Joins

Index Result Table

.…

Aaron, ToyotaRav4

Caleb, JeepCherokee

Puja, HondaCRV

.…

SELECT ?x WHERE {

?x worksAt USNA.

?x commuteMethod bike.

?x livesIn Baltimore.

?x owns ?vehicle.

?vehicle vehicleType SUV.

}

SELECT ?person ?car

WHERE {

?person livesIn Baltimore.

?person owns ?car.

?car vehicleType SUV.

}

1. Pre-compute a portion of the query

using MapReduce

2. Store SPARQL describing the query

along with pre-computed values in

Accumulo

3. Normalize query variables to match

stored SPARQL variables during

query execution

Stored SPARQL

Views * *

Parallel Joins

SELECT ?x WHERE {

?type rdfs:subClassOf Person.

?x rdf:type ?type . }

|| Joins *

…

…

…

…

rdfs:subClassOf, Person, Child

rdfs:subClassOf, Person, Man

rdfs:subClassOf, Person, Woman

…

…

Step 1: POS – scan range

…

rdf:type, Child, Bob

rdf:type, Child, Jane

…

rdf:type, Man, Adam

rdf:type, Man, George

rdf:type, Woman, Elsa

…

Step 2: For each ?type in parallel,

POS – scan range

Batch Scanner

SELECT ?x WHERE {

?x worksAt USNA .

?x livesIn Baltimore . }

…

rdf:type, Woman, Elsa

worksAt, Cisco, John

worksAt, Cisco, Zack

worksAt, USNA, Bob

worksAt, USNA, Greta

worksAt, USNA, John

worksAt, UW, Elsa

…

Step 1: POS – scan range

…

Bob, livesIn, Annapolis

…

Greta, livesIn, Baltimore

…

John, livesIn, Baltimore

…

Step 2: batched for each ?x,

SPO – index lookup

Scanner *

Result: Decreases network

connections by up to 1K fold

Time Ranges

 SELECT ?load WHERE{

?measurement cpuLoad ?load .

?measurement timestamp ?ts .

FILTER (?ts “30 min ago”) }

 SELECT ?load WHERE{

?measurement cpuLoad ?load .

?measurement timestamp ?ts .

timeRange (?ts,1300, 1330) }
Result: Allow RDF querying on a small subset of data

(based on loading time)
Ranges *

Additional Features

 Range queries support in serialized format

for many types

 Regular expression filter incorporated into

Accumulo scan

 Support for named graphs

 SPARQL to Pig translation

 MongoDB back-end support

 Entity-centric index

 Temporal, geospatial, full-text indexing

Additions *

Outline

 Problem

 Background

 Rya

 Triple index

 Performance enhancements

 Additional features

 Experimental results

 Conclusions and future work

Experiments Set-up

 Accumulo 1.3.0

 1 Accumulo master

 10 Accumulo tablet servers

 Each node: 8 core Intel Xeon CPU, 16 GB

RAM, 3 TB Hard Drive

 Tomcat server for Rya

 Java implementation

 Dataset: LUBM

Experiments * * * * * * * * *

Performance Metrics

 LUBM data set – 10 to 15000 universities

 Load time

 Queries per second

 Using batch scanner

 Without batch scanner

Experiments * * * * * * * * *

Data Set - LUBM

Nb Universities Nb Triples

10 1.3M

100 13.8M

1000 138.2M

2000 258.8M

5000 603.7M

10000 1.38B

15000 2.1B

Experiments * * * * * * * * *

Load time

Experiments * * * * * * * * *

Rya Query Performance - QpS

Experiments * * * * * * * * *

Query 5

Experiments * * * * * * * * *

Query Optimization Results

 Ran 14 queries against the Lehigh University Benchmark (LUBM)

dataset (33.34 million triples)
 LUBM queries 2, 5, 9, and 13 were discarded after 3 runs due to query complexity

 Remaining queries were executed 12 times

 Cluster Specs:

 8 worker nodes, each has 2 x 6-Core Xeon E5-2440 (2.4GHz) Processors

and 48 GB RAM

 Results indicate that cardinality and join selectivity optimizations provide

improved or comparable performance
Experiments * * * * * * * * *

Comparison with Other Systems

System Load Time

SHARD 10h

Graph Partitioning 4h 10min

Rya 3h 1min

 Systems:

 Graph Partitioning [HAR11]

 SHARD [RS10]

 Benchmark: LUBM 2000

Experiments * * * * * * * * *

Comparison with Other Systems

Experiments * * * * * * * * *

Related Work

 RDF-3X [NW08] - centralized

 Graph Partitioning [HAR11] – graph

partitioning + local RDF engines

+MapReduce

 SHARD [RS10] – RDF triple store + HDFS

 Hexastore [WKB08] – six indexes

 SPARQL/MapReduce [MYL10] –

MapReduce jobs to process SPARQL

Outline

 Problem

 Background

 Rya

 Triple index

 Performance enhancements

 Additional features

 Experimental results

 Conclusions and future work

Conclusions and Future Work

 Rya – scalable RDF Triple Store

 Built on top of Accumulo and OpenRDF

 Handles billions of triples

 Millisecond query time for most queries

 Apache project (incubating)

 Future:

 New join algorithms

 Federated Rya

 Improved MongoDB support

 Spark support

 Temporal and spatial indexing

Rya Community – Join Us!

 Friendly

 Responsive

 Growing

 How you can help:

 Join the dev list, participate in discussions

 Try the software

 Submit bug reports, new features requests

 Improve documentation

 Verify release candidates

Get Involved!

https://rya.apache.org

dev@rya.incubator.apache.org

https://rya.apache.org/

Thank You!

Questions?

