

The Architecture for the Digital World®

SCHED_DEADLINE
a status update

Juri Lelli
juri.lelli@arm.com

 2

Agenda
Presentation outline

 Deadline scheduling (AKA SCHED_DEADLINE)
What is it?

Status update

 Under discussion
Bandwidth reclaiming

Clock frequency selection hints

 Future work
Group scheduling

Dynamic feedback mechanism

Enhanced priority inheritance

Energy awareness

 3

Agenda
Presentation outline

 Deadline scheduling (AKA SCHED_DEADLINE)
What is it?

Status update

 Under discussion
Bandwidth reclaiming

Clock frequency selection hints

 Future work
Group scheduling

Dynamic feedback mechanism

Enhanced priority inheritance

Energy awareness

 4

SCHED_DEADLINE
What is it?

it's not only about deadlines
 relatively new addition to the Linux scheduler

since v3.14

 real-time scheduling policy
higher priority than NORMAL and FIFO/RR

only root can use it (for now …)

 enables predictable task scheduling
allows explicit per-task latency constraints

avoids starvation (tasks cannot eat all available CPU time)

enriches scheduler's knowledge about QoS requirements

 5

SCHED_DEADLINE
What is it?

Predictability and Isolation

SCHED_NORMAL
default Linux scheduling
policy

SCHED_DEADLINE
 finer-grained control over tasks scheduling
 tasks don't interfere with each other

4 CPU-hog processes on 4 CPUs

 6

SCHED_DEADLINE
What is it?

Linux scheduler classes and policies

Linux scheduler

fair.crt.cdeadline.c

SCHED_DEADLINESCHED_DEADLINE

SCHED_RRSCHED_RR

SCHED_BATCHSCHED_BATCH

SCHED_IDLESCHED_IDLE

SCHED_NORMALSCHED_NORMAL

SCHED_FIFOSCHED_FIFO

 7

SCHED_DEADLINE
EDF + CBS

it implements
 Earlies Deadline First (EDF)

tasks with earliest deadline get executed first

 Constant Bandwidth Server (CBS)
reservation based scheduling

it's the cool thing here!

 8

SCHED_DEADLINE
EDF (plain)

τ1 5 time units every 9→ ~89% utilization

τ2 2 time units every 6→

τ1

τ2

t

t

 9

SCHED_DEADLINE
EDF (plain: problems)

τ1 second job behaves bad→

τ1 causes a deadline miss on τ2

τ1

τ2

t

t

 10

SCHED_DEADLINE
EDF (plain: problems)

τ1 blocks just after the second activation→

τ1 resumes with the third instance of → τ2

τ1

τ2

t

t

τ1 causes a deadline miss on τ2

 11

SCHED_DEADLINE
Constant Bandwidth Server (and EDF)

 resource (CPU) reservation mechanism
a task is allowed to execute for

Q time units (runtime)

in every interval of length P (period)

 CBS computes reservation's dynamic deadlines
slowing down or throttling misbehaving tasks

 EDF gives higher priority to more urgent reservations
 EDF + CBS provides temporal isolation

 12

SCHED_DEADLINE
EDF + CBS

plain EDF

(bad task) →

τ1 second job behaves bad→

τ1 once budget exhausted, delay until next period →

τ1

τ2

t

t

τ1

τ2

t

t

 13

SCHED_DEADLINE
EDF + CBS

plain EDF

(block/unblock) →

τ1

τ2

t

t

τ1 blocks just after the second activation→

τ1 resumes with the third instance of → τ2

CBS “unblock rule” applied

τ1

τ2

t

t

 14

SCHED_DEADLINE
Load Balancing and Inheritance (and a question)

 active load balancing (push/pull)
like for SCHED_FIFO

global EDF: on an M-CPUs system the M earliest DL ready tasks are always
running (respecting affinity/cpusets)

 deadline inheritance
boosted task inherits deadline of the donor

suboptimal solution… see future work

 common question: does it work with PREEMPT_RT ?
it's orthogonal to it

PREEMPT_RT reduces latencies, SCHED_DEADLINE implements a scheduling
algorithm (can benefit from the former)

they should work together without any problem :-)

 15

SCHED_DEADLINE
how to setup params

simple rule of thumb

runtime [ns]

deadline [ns]

period [ns]

average

activation deadline next activation

 16

SCHED_DEADLINE
API
struct sched_attr {

 u32 size;

 u32 sched_policy;

 u64 sched_flags;

 /* SCHED_NORMAL, SCHED_BATCH */

 s32 sched_nice;

 /* SCHED_FIFO, SCHED_RR */

 u32 sched_priority;

 /* SCHED_DEADLINE */

 u64 sched_runtime;

 u64 sched_deadline;

 u64 sched_period;

};

int sched_setattr(pid_t pid, const struct sched_attr *attr, unsigned int flags);

int sched_getattr(pid_t pid, const struct sched_attr *attr, unsigned int size, unsigned int flags);

runtime [ns]

deadline [ns]

period [ns]

average

 17

SCHED_DEADLINE
Example of usage

#include <sched.h>
...

struct sched_attr attr;

attr.size = sizeof(struct attr);

attr.sched_policy = SCHED_DEADLINE;

attr.sched_runtime = 30000000;

attr.sched_period = 100000000;

attr.sched_deadline = attr.sched_period;

...

if (sched_setattr(gettid(), &attr, 0))

 perror("sched_setattr()");

...

 18

SCHED_DEADLINE
numbers*

 mplayer HD movie
 QoS is inter-frame time

(IFT)
curr_dt – prev_dt

 Variation in IFT is bad
 6 other instances of

mplayer in background

frame rate = 23.9 fps
IFT = 41708 us

* Juri Lelli, Claudio Scordino, Luca Abeni, Dario Faggioli, Deadline scheduling in the Linux kernel, Software: Practice and Experience 2015
 http://onlinelibrary.wiley.com/doi/10.1002/spe.2335/abstract

 cumulative distribution function (CDF)
vertical line at expected IFT gives best result

 19

SCHED_DEADLINE
numbers*

frame rate = 23.9 fps
IFT = 41708 us

SCHED_NORMAL (CFS)
QoS highly dependent on
system load

* Juri Lelli, Claudio Scordino, Luca Abeni, Dario Faggioli, Deadline scheduling in the Linux kernel, Software: Practice and Experience 2015
 http://onlinelibrary.wiley.com/doi/10.1002/spe.2335/abstract

 20

SCHED_DEADLINE
numbers*

frame rate = 23.9 fps
IFT = 41708 us

SCHED_NORMAL (CFS)
QoS highly dependent on
system load

SCHED_DEADLINE
player not affected
(period = IFT , runtime = 13ms)

* Juri Lelli, Claudio Scordino, Luca Abeni, Dario Faggioli, Deadline scheduling in the Linux kernel, Software: Practice and Experience 2015
 http://onlinelibrary.wiley.com/doi/10.1002/spe.2335/abstract

 21

Agenda
Presentation outline

 Deadline scheduling (AKA SCHED_DEADLINE)
What is it?

Status update

 Under discussion
Bandwidth reclaiming

Clock frequency selection hints

 Future work
Group scheduling

Dynamic feedback mechanism

Enhanced priority inheritance

Energy awareness

 22

Bandwidth reclaiming
under discussion*

* CPU reclaiming for SCHED_DEADLINE
 https://lwn.net/Articles/671929/

 tasks' bandwidth is fixed
can only be changed with syscall

 what if tasks occasionally need more bandwidth ?
occasional workload fluctuations (e.g., network traffic, rendering particularly
heavy frame)

 reclaiming: allow tasks to consume more than allocated
up to a certain maximum fraction of CPU time

if this doesn't break others' guarantees

 implementation details
greedy reclaiming of unused bandwidth (GRUB)

Luca Abeni (University of Trento) driving this

 23

Bandwidth reclaiming
results*

* Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli, Greedy CPU reclaiming for SCHED_DEADLINE, RTLWS14
 http://disi.unitn.it/~abeni/reclaiming/rtlws14-grub.pdf

 Task1 (6ms, 20ms)
constant execution time
(5ms)

 Task2 (45ms, 260ms)
experiences occasional
variances (35-52ms)

T2 reservation period

C
D

F

Response time (ms)

 24

Bandwidth reclaiming
results*

 Task1 (6ms, 20ms)
constant execution time
(5ms)

 Task2 (45ms, 260ms)
experiences occasional
variances (35-52ms)

T2 reservation period

Plain CBS
T2 response time bigger than
reservation period (~25%)

C
D

F

Response time (ms)

* Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli, Greedy CPU reclaiming for SCHED_DEADLINE, RTLWS14
 http://disi.unitn.it/~abeni/reclaiming/rtlws14-grub.pdf

 25

Bandwidth reclaiming
results*

 Task1 (6ms, 20ms)
constant execution time
(5ms)

 Task2 (45ms, 260ms)
experiences occasional
variances (35-52ms)

Response time (ms)

T2 reservation period

C
D

F
GRUB
T2 always completes before
reservation period (using time left
by T1)

* Luca Abeni, Juri Lelli, Claudio Scordino, Luigi Palopoli, Greedy CPU reclaiming for SCHED_DEADLINE, RTLWS14
 http://disi.unitn.it/~abeni/reclaiming/rtlws14-grub.pdf

 26

Clock frequency selection hints
under discussion*

* https://lkml.org/lkml/2016/3/17/420
 https://lkml.org/lkml/2016/2/22/1037

 scheduler driven CPU clock frequency selection
schedfreq/schedutil solutions

each scheduling class has to provide hints

 admitted bandwidth tracking
worst case utilization

“ghost” utilization

 bandwidth reclaiming introduces per CPU active
utilization tracking

better indication tasks' actual requirements

instead of donating we can decide to clock down, saving energy

 27

Agenda
Presentation outline

 Deadline scheduling (AKA SCHED_DEADLINE)
What is it?

Status update

 Under discussion
Bandwidth reclaiming

Clock frequency selection hints

 Future work
Group scheduling

Dynamic feedback mechanism

Enhanced priority inheritance

Energy awareness

 28

Group scheduling
future work

 one to one association between tasks and reservations
 sometime is better/easier to group a set of tasks under

the same umbrella
virtual machine threads

rendering pipeline

 implement cgroups support (like for NORMAL/FIFO)
theory needs thinking: how can we guarantee isolation between local
and global scheduler ?

once done it might replace FIFO/RR throttling

might be a practical solution for forking question

 29

Dynamic feedback mechanism
future work

 choosing reservation parameters can be difficult
(tradeoff)

a runtime too small ends up affecting QoS

a runtime too big ends up wasting CPU resource

 runtime feedback mechanism to adapt reservations to
varying workloads

bigger time scales than bandwidth reclaiming

needs collaboration between kernel and userspace

middleware or runtime (e.g., Android) is probably best placed

 30

Enhanced priority inheritance
future work

 move from deadline inheritance to …
 bandwidth inheritance
 similar to proxy scheduling
 boosted task runs into the donor's reservation
 not extremely easy on multiprocessors :-/

 31

Energy awareness
future work

 in the context of energy aware scheduling (EAS*)
 meet QoS requirements in the most energy efficient way
 several things needs changing

introduce capacity and power awareness

start using energy model

make balancing decisions energy aware

 better integration of scheduling decisions across
scheduling policies is probably required

* https://lkml.org/lkml/2015/7/7/754

 32

Conclusions

Kernel space has already quite some features and more is
in the pipeline, but…

we need more userspace adoption to foster further
development (or at least more people telling us they are
using it :-))

 33

Conclusions

Kernel space has already quite some features and more is
in the pipeline, but…

we need more userspace adoption to foster further
development (or at least more people telling us they are
using it :-))

 34

Conclusions

Kernel space has already quite some features and more is
in the pipeline, but…

we need more userspace adoption to foster further
development (or at least more people telling us they are
using it :-))

 35

Conclusions

Kernel space has already quite some features and more is
in the pipeline, but…

we need more userspace adoption to foster further
development (or at least more people telling us they are
using it :-))

The Architecture for the Digital World®

Thank You!

Juri Lelli
juri.lelli@arm.com

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

