
SCSI EH and the real world

Dr. Hannes Reinecke
SUSE Labs

hare@suse.de

2

Introduction

• The linux SCSI stack has a long-standing history

• Including an error recovery strategy

• Has been in the linux kernel since time immemorial

• And what with it being heavily used, it will have been
tested thoroughly by now.

3

Introduction

• The linux SCSI stack has a long-standing history

• Including an error recovery strategy

• Has been in the linux kernel since time immemorial

• And what with it being heavily used, it will have been
tested thoroughly by now.

… Or so one would hope

4

Introduction

• The linux SCSI stack has a long-standing history

• Including an error recovery strategy

• Has been in the linux kernel since time immemorial

• And what with it being heavily used, it will have been
tested thoroughly by now.

… Or so one would hope

… And then real life kicked in

5

An angry customer

• Received a customer call:

“One of my system took more than two hours to
recover from a SCSI error, despite multipath being
active and all other paths had been ok. During that
time no I/O had been possible. Isn't multipath
supposed to handle these situations?”

6

An angry customer

• Received a customer call:

“One of my system took more than two hours to
recover from a SCSI error, despite multipath being
active and all other paths had been ok. During that
time no I/O had been possible. Isn't multipath
supposed to handle these situations?”

… Good question. So what happened here?

SCSI Error Handling

8

SCSI Error handling in general

• SCSI is governed by T-10 standards

• Everything regarding SCSI commands and SCSI
command handling is specified:
‒ SCSI command specifications (SPC, SBC, etc)

‒ SCSI command transport (SAS, FC, iSCSI etc)

‒ SCSI architecture model (SAM)

9

SCSI error recovery

• Some hints can be glanced from the SCSI
architectural model

• Defines Task Management Functions to control
commands and command sets:
‒ Task abort

‒ Task set abort

‒ LUN Reset

• But error recovery itself is not specified

10

SCSI error recovery implementations

• No specification, so devise your own

• Implementation based on architecture details, with
tweaks accumulating over time

SCSI-EH on Linux

12

Linux SCSI EH

• Originally implemented in Linux 2.2, based on the
then-up-to-date SCSI parallel HBAs

• Improvement over the prior, simple, error recovery
procedures

• Modelled around the principles of parallel SCSI:
‒ Bus topology

‒ Bus is being driven by the HBA

‒ Transaction between a single initiator and single targets only

‒ Bus is capable of handling a single transaction at a time

13

SCSI Parallel bus topology

14

EH Principles

• Retry the command

• Quiesce bus prior to start EH

• Invoke EH strategy for each device referred to by a
failed command

• Escalate to higher EH levels on failure

• Verify device operation after successful completion of
EH strategy routine

15

EH Recovery Strategy

• Command abort

• Send Test Unit Ready

• LUN Reset

• Target Reset

• Bus Reset

• HBA Reset

• Offline device

16

EH recovery strategy

abort
cmd

Send
TUR

LUN
Reset

Host
Reset

Target
Reset

Bus
Reset

Device
offline

Command
timeout Command

error

17

EH Recovery workflow

• Each failed command will be added to a list of failed
commands

• Process this list after quiesce has been reached

• Each failed command is subjected to the error
escalation strategy

• A command is considered recovered once an error
recovery routine succeeds

18

EH Recovery cleanup

• A successful recovery is not identical with a working
device:
‒ A successful LUN RESET just means we've been able to send

a LUN RESET command, NOT that the device actually has
been reset

‒ Nor does it means that the reset was able to fix the original
issue

• Verify the recovery

• Send TEST UNIT READY command to verify the
device is working

SCSI EH on FibreChannel

20

FibreChannel topology

• On FibreChannel (FC) the bus is no longer controlled
by the HBA

• HBA participates on a shared network, which has an
independent lifetime than the HBA

• SCSI devices (remote FC ports) are independent on
the HBA

• Connection between the HBA and the remote ports
might drop at any time (I_T nexus loss)

21

FC topology

22

FC and multipathing

• Multipath has been implemented to avoid temporary
I/O failure

• Connect a single device via several paths to provide
enhanced reliability

• Any I_T Nexus loss would translate into an I/O error,
invoking SCSI EH

• SCSI EH would stop I/O etc.

• Multipath would stop until SCSI EH is finished

23

I_T nexus loss and SCSI EH

• Lower EH escalation steps require working
communication with the device

• For an I_T Nexus loss this communication doesn't
work, causing EH failure for those steps

• SCSI EH would cause a host reset, and offline the
device after that

• Path cannot be recovered.

24

fc_block_scsi_eh() and dev_loss_tmo

• fc_block_scsi_eh(): Avoid any I_T Nexus Loss induced
error by checking the connection state prior to call any
EH recovery routine, waiting for the connection state
to stabilize

• FAST_IO_FAIL: Add a flag to the request to avoid any
retry in case of I_T Nexus loss failure.

• dev_loss_tmo: Add a timer tracking I_T Nexus loss;
once the timer expires the remote port is assumed to
be gone and will be deleted from the system

25

'Improved' EH for FibreChannel

• FAST_IO_FAIL flag suppresses command retries

• Distinct error code 'DID_TRANSPORT_DISRUPTED'
to be returned in case of I_T Nexus loss

• Short-circuit SCSI EH by prefixing each EH routine
with fc_block_scsi_eh()

→ Side-step EH for FibreChannel

SCSI EH on libata

27

Libata implementation

• Re-implement S-ATA support on top of SCSI

• Successor of the older IDE stack

• S-ATA error handling very rudimentary: commands
either succeed or run into a timeout.

• Standard SCSI EH doesn't work, as the EH recovery
routines have no equivalent on S-ATA

• Implement different EH routine via
.eh_strategy_handler

SCSI EH on SAS

29

SAS and SCSI EH

• Working well with stock SCSI EH

30

SAS and SCSI EH

• Working well with stock SCSI EH

• Until someone connected a S-ATA CD-ROM

31

SAS and SCSI EH

• Working well with stock SCSI EH

• Until someone connected a S-ATA CD-ROM

• Suddenly the entire system stalled every 5 seconds

… WTF?

32

Libata oddities

• Libata has a 1:1 topology: one SCSI device maps to
one SCSI host.

• The libata error recovery stops the SCSI host, figures
out what's wrong with sending various commands,
retrains the link etc until the device respond again.

• Sadly, a CD-ROM with empty slot will cause an ATA
error as there's no medium present.

• And the linux kernel implement CD-ROM polling within
the kernel.

33

SAS topology

34

SAS and libata

• SAS HBAs offload S-ATA devices to libata stack

• S-ATA devices show up alongside normal SAS
devices as a 'normal' LUN.

• Each SAS HBA will be represented by a single SCSI
host

35

Mixed SAS/S-ATA topology

libsas libata

36

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

37

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

38

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

• Libata error recover starts.

39

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

40

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.

41

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.

• For a single SAS HBA: the entire I/O will be stopped.

42

CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.

• For a single SAS HBA: the entire I/O will be stopped.

Oops …

43

SAS EH modification

• Not use standard SCSI EH routines

• Implement separate .eh_strategy_handler for SAS

So where do we stand now?

45

Analysis of the customer problem

• Switch firmware issues caused the HBA to not detect
a remote port failure

• HBA continues to send I/O to the removed rport
• (wait 5 x 30 seconds)

• First I/O times out

• SCSI EH starts, waiting for all outstanding commands

• (wait for another 5 x 30 seconds)

• SCSI EH recovery starts after the last command timed
out

46

Analysis of the customer problem

• EH recovery, first level: command abort
‒ send command abort for the first command

‒ (wait for timeout)

‒ Abort the command abort

‒ (continue for all commands)

• Escalate to next level: LUN reset

47

Analysis of the customer problem

• EH recovery, second level: LUN reset
‒ send LUN Reset for the first device

‒ (wait for timeout)

‒ (continue for all devices)

• Escalate to next level: Target reset

48

Analysis of the customer problem

• EH recovery, third level: Target reset
‒ send Target Reset for the first device

‒ (wait for timeout)

‒ (continue for all targets)

• Escalate to next level: Bus reset

• → Target Reset is deprecated with SPC-3

49

Analysis of the customer problem

• EH recovery, third level: Bus reset
‒ FC does not have the concept of a 'bus', so most HBAs

emulate 'Bus reset' by sending 'Target Reset' to all attached
rports

‒ (wait for timeout)

‒ (continue for all targets)

• Escalate to next level: Host reset

50

Analysis of the customer problem

• EH recovery, forth level: Host reset
‒ Issue Host reset

‒ Host reset re-scans the attached remote ports

‒ Remote port status in sync again

• EH recovery success

• Send TEST UNIT READY to all devices

• EH finished

SCSI EH Redesign

52

Current SCSI EH usage

• FC: Side-step SCSI EH

• Libata: separate EH handler

• SAS: separate EH handler

• Only parallel SCSI and iSCSI are still using stock
SCSI EH

• Maybe we should be updating SCSI EH to make it
more useful …

53

SCSI EH Redesign

• Overall goals:
‒ Inline command aborts

‒ Limit overall SCSI EH runtime

‒ Release commands as early as possible

‒ Reduce cross-speak during higher EH levels

‒ Check for I_T Nexus loss

54

Inline command aborts

• Command timeouts can occur on FC with faulty SFPs

• Command abort has no dependency on other
commands, just the originating command

• Send command abort once the timeout triggers,
without waiting for EH to start

• Patchset posted to linux-scsi

• Reduce SCSI EH turn-around time by half (!)

55

Limit overall EH runtime

• Currently EH runtime is unbounded

• Hard to define system timeout, eg in cluster
environment

• Implement an 'eh_deadline' setting

• After eh_deadline is reached SCSI EH drops down to
host reset

• Patchset posted to linux-scsi

56

Release commands early

• SCSI EH keeps failed command in a list

• Commands will be completed after EH is finished

• Multipath failover can only happen after the command
has been completed

• After LUN Reset all commands are discarded

• But: LUN Reset might fail, leaving commands in an
unclear state (terminated? Not terminated?)

57

Reduce cross-speak at higher levels

• LUN Reset will terminat all I/O on that LUN,
regardless on the initiator

• Spurious command aborts in multipath or cluster
scenario

• Split 'LUN Reset' in two different stages:
‒ Use 'Task Set abort' to terminate outstanding I/O

‒ Use 'LUN Reset' to actually reset the LUN

• Remove Target Reset, deprecated

• Do not implement 'bus reset' on FC

58

Check for I_T Nexus loss

• On FibreChannel SCSI EH cannot work during I_T
Nexus Loss

• Current workaround is to wait in SCSI EH until
dev_loss_tmo/fast_io_fail_tmo put the remote port into
a definite state

• Implement an I_T Nexus reset EH step which is
responsible for resetting the remote port

59

Proposed SCSI EH strategy

• Send command aborts after timeout

• EH Recovery starts:
‒ Block I/O to the device

‒ Issue 'Task Set Abort'

‒ Block I/O to the target

‒ Issue I_T Nexus Reset

‒ Complete outstanding command on success

‒ Engage current EH strategy

‒ LUN Reset, Target Reset etc

60

EH recovery strategy

abort
cmd

Send
TUR

LUN
Reset

Host
Reset

Target
Reset

Bus
Reset

Device
offline

Command
timeout

Command
error

Transport
Reset

Task Set
abort

SCSI EH discussion points

62

Early command completion

• Complete commands after 'Abort Task Set'

• Unclear status if 'Abort Task Set' failed

• Easy way:
‒ Require LLDDs to not refer to outstanding commands after

'Abort Task Set'

‒ But then 'Abort Task Set' cannot really fail, as this is the
precise meaning of that function

• Complicated way:
‒ Keep the list of commands until one recovery step succeeds

• Best way still to be discussed

63

Check recovery level status

• Each recovery level can succeed or fail

• 'Success' currently only means that the recovery step
has executed

• It does not mean that the recovery step did anything to
correct the situation

• Separate verification required

• Action depends on the recovery level

Thank you.

64

Most recent sources are available at

git://github.com/hreinecke/scsi-devel

Unpublished Work of SUSE. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of
their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The
development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

