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Introduction

• The linux SCSI stack has a long-standing history

• Including an error recovery strategy

• Has been in the linux kernel since time immemorial

• And what with it being heavily used, it will have been 
tested thoroughly by now.
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Introduction

• The linux SCSI stack has a long-standing history

• Including an error recovery strategy

• Has been in the linux kernel since time immemorial

• And what with it being heavily used, it will have been 
tested thoroughly by now.

… Or so one would hope

… And then real life kicked in
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An angry customer

• Received a customer call:

“One of my system took more than two hours to 
recover from a SCSI error, despite multipath being 
active and all other paths had been ok. During that 
time no I/O had been possible. Isn't multipath 
supposed to handle these situations?”
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An angry customer

• Received a customer call:

“One of my system took more than two hours to 
recover from a SCSI error, despite multipath being 
active and all other paths had been ok. During that 
time no I/O had been possible. Isn't multipath 
supposed to handle these situations?”

… Good question. So what happened here?



SCSI Error Handling
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SCSI Error handling in general

• SCSI is governed by T-10 standards

• Everything regarding SCSI commands and SCSI 
command handling is specified:
‒ SCSI command specifications (SPC, SBC, etc)

‒ SCSI command transport (SAS, FC, iSCSI etc)

‒ SCSI architecture model (SAM)
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SCSI error recovery

• Some hints can be glanced from the SCSI 
architectural model

• Defines Task Management Functions to control 
commands and command sets:
‒ Task abort

‒ Task set abort

‒ LUN Reset

• But error recovery itself is not specified
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SCSI error recovery implementations

• No specification, so devise your own

• Implementation based on architecture details, with 
tweaks accumulating over time



SCSI-EH on Linux
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Linux SCSI EH

• Originally implemented in Linux 2.2, based on the 
then-up-to-date SCSI parallel HBAs

• Improvement over the prior, simple, error recovery 
procedures

• Modelled around the principles of parallel SCSI:
‒ Bus topology

‒ Bus is being driven by the HBA

‒ Transaction between a single initiator and single targets only

‒ Bus is capable of handling a single transaction at a time
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SCSI Parallel bus topology
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EH Principles

• Retry the command

• Quiesce bus prior to start EH

• Invoke EH strategy for each device referred to by a 
failed command

• Escalate to higher EH levels on failure

• Verify device operation after successful completion of 
EH strategy routine
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EH Recovery Strategy

• Command abort

• Send Test Unit Ready

• LUN Reset

• Target Reset

• Bus Reset

• HBA Reset

• Offline device
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EH recovery strategy
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EH Recovery workflow

• Each failed command will be added to a list of failed 
commands

• Process this list after quiesce has been reached

• Each failed command is subjected to the error 
escalation strategy

• A command is considered recovered once an error 
recovery routine succeeds
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EH Recovery cleanup

• A successful recovery is not identical with a working 
device:
‒ A successful LUN RESET just means we've been able to send 

a LUN RESET command, NOT that the device actually has 
been reset

‒ Nor does it means that the reset was able to fix the original 
issue

• Verify the recovery

• Send TEST UNIT READY command to verify the 
device is working



SCSI EH on FibreChannel
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FibreChannel topology

• On FibreChannel (FC) the bus is no longer controlled 
by the HBA

• HBA participates on a shared network, which has an 
independent lifetime than the HBA

• SCSI devices (remote FC ports) are independent on 
the HBA

• Connection between the HBA and the remote ports 
might drop at any time (I_T nexus loss)
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FC topology
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FC and multipathing

• Multipath has been implemented to avoid temporary 
I/O failure

• Connect a single device via several paths to provide 
enhanced reliability

• Any I_T Nexus loss would translate into an I/O error, 
invoking SCSI EH

• SCSI EH would stop I/O etc.

• Multipath would stop until SCSI EH is finished
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I_T nexus loss and SCSI EH

• Lower EH escalation steps require working 
communication with the device

• For an I_T Nexus loss this communication doesn't 
work, causing EH failure for those steps

• SCSI EH would cause a host reset, and offline the 
device after that

• Path cannot be recovered.
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fc_block_scsi_eh() and dev_loss_tmo

• fc_block_scsi_eh(): Avoid any I_T Nexus Loss induced 
error by checking the connection state prior to call any 
EH recovery routine, waiting for the connection state 
to stabilize

• FAST_IO_FAIL: Add a flag to the request to avoid any 
retry in case of I_T Nexus loss failure.

• dev_loss_tmo: Add a timer tracking I_T Nexus loss; 
once the timer expires the remote port is assumed to 
be gone and will be deleted from the system
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'Improved' EH for FibreChannel

• FAST_IO_FAIL flag suppresses command retries

• Distinct error code 'DID_TRANSPORT_DISRUPTED' 
to be returned in case of I_T Nexus loss

• Short-circuit SCSI EH by prefixing each EH routine 
with fc_block_scsi_eh()

→ Side-step EH for FibreChannel



SCSI EH on libata
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Libata implementation

• Re-implement S-ATA support on top of SCSI

• Successor of the older IDE stack

• S-ATA error handling very rudimentary: commands 
either succeed or run into a timeout.

• Standard SCSI EH doesn't work, as the EH recovery 
routines have no equivalent on S-ATA

• Implement different EH routine via 
.eh_strategy_handler



SCSI EH on SAS
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SAS and SCSI EH

• Working well with stock SCSI EH
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SAS and SCSI EH

• Working well with stock SCSI EH

• Until someone connected a S-ATA CD-ROM
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SAS and SCSI EH

• Working well with stock SCSI EH

• Until someone connected a S-ATA CD-ROM

• Suddenly the entire system stalled every 5 seconds

… WTF?
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Libata oddities

• Libata has a 1:1 topology: one SCSI device maps to 
one SCSI host.

• The libata error recovery stops the SCSI host, figures 
out what's wrong with sending various commands, 
retrains the link etc until the device respond again.

• Sadly, a CD-ROM with empty slot will cause an ATA 
error as there's no medium present.

• And the linux kernel implement CD-ROM polling within 
the kernel.
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SAS topology
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SAS and libata

• SAS HBAs offload S-ATA devices to libata stack

• S-ATA devices show up alongside normal SAS 
devices as a 'normal' LUN.

• Each SAS HBA will be represented by a single SCSI 
host
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Mixed SAS/S-ATA topology

libsas libata
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.

• Libata error recover starts.
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.

• For a single SAS HBA: the entire I/O will be stopped.
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CD-ROM polling on SAS/libata

• Kernel polls CD-ROM

• CD-ROM on libata registers an error as CD-ROM 
medium is not present.

• Libata error recover starts.

• SCSI Host is stopped.

• All I/O to LUNs connected to that Host is stopped.

• For a single SAS HBA: the entire I/O will be stopped.

Oops … 
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SAS EH modification

• Not use standard SCSI EH routines

• Implement separate .eh_strategy_handler for SAS



So where do we stand now?
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Analysis of the customer problem

• Switch firmware issues caused the HBA to not detect 
a remote port failure

• HBA continues to send I/O to the removed rport
• (wait 5 x 30 seconds)

• First I/O times out

• SCSI EH starts, waiting for all outstanding commands

• (wait for another 5 x 30 seconds)

• SCSI EH recovery starts after the last command timed 
out
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Analysis of the customer problem

• EH recovery, first level: command abort
‒ send command abort for the first command

‒ (wait for timeout)

‒ Abort the command abort

‒ (continue for all commands)

• Escalate to next level: LUN reset
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Analysis of the customer problem

• EH recovery, second level: LUN reset
‒ send LUN Reset for the first device

‒ (wait for timeout)

‒ (continue for all devices)

• Escalate to next level: Target reset
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Analysis of the customer problem

• EH recovery, third level: Target reset
‒ send Target Reset for the first device

‒ (wait for timeout)

‒ (continue for all targets)

• Escalate to next level: Bus reset

• → Target Reset is deprecated with SPC-3
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Analysis of the customer problem

• EH recovery, third level: Bus reset
‒ FC does not have the concept of a 'bus', so most HBAs 

emulate 'Bus reset' by sending 'Target Reset' to all attached 
rports

‒ (wait for timeout)

‒ (continue for all targets)

• Escalate to next level: Host reset
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Analysis of the customer problem

• EH recovery, forth level: Host reset
‒ Issue Host reset

‒ Host reset re-scans the attached remote ports

‒ Remote port status in sync again

• EH recovery success

• Send TEST UNIT READY to all devices

• EH finished



SCSI EH Redesign
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Current SCSI EH usage

• FC: Side-step SCSI EH

• Libata: separate EH handler

• SAS: separate EH handler

• Only parallel SCSI and iSCSI are still using stock 
SCSI EH

• Maybe we should be updating SCSI EH to make it 
more useful … 
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SCSI EH Redesign

• Overall goals:
‒ Inline command aborts

‒ Limit overall SCSI EH runtime

‒ Release commands as early as possible

‒ Reduce cross-speak during higher EH levels

‒ Check for I_T Nexus loss
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Inline command aborts

• Command timeouts can occur on FC with faulty SFPs

• Command abort has no dependency on other 
commands, just the originating command

• Send command abort once the timeout triggers, 
without waiting for EH to start

• Patchset posted to linux-scsi

• Reduce SCSI EH turn-around time by half (!)
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Limit overall EH runtime

• Currently EH runtime is unbounded

• Hard to define system timeout, eg in cluster 
environment

• Implement an 'eh_deadline' setting

• After eh_deadline is reached SCSI EH drops down to 
host reset

• Patchset posted to linux-scsi
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Release commands early

• SCSI EH keeps failed command in a list

• Commands will be completed after EH is finished

• Multipath failover can only happen after the command 
has been completed

• After LUN Reset all commands are discarded

• But: LUN Reset might fail, leaving commands in an 
unclear state (terminated? Not terminated?)
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Reduce cross-speak at higher levels

• LUN Reset will terminat all I/O on that LUN, 
regardless on the initiator

• Spurious command aborts in multipath or cluster 
scenario

• Split 'LUN Reset' in two different stages:
‒ Use 'Task Set abort' to terminate outstanding I/O

‒ Use 'LUN Reset' to actually reset the LUN

• Remove Target Reset, deprecated

• Do not implement 'bus reset' on FC
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Check for I_T Nexus loss

• On FibreChannel SCSI EH cannot work during I_T 
Nexus Loss

• Current workaround is to wait in SCSI EH until 
dev_loss_tmo/fast_io_fail_tmo put the remote port into 
a definite state

• Implement an I_T Nexus reset EH step which is 
responsible for resetting the remote port
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Proposed SCSI EH strategy

• Send command aborts after timeout

• EH Recovery starts:
‒ Block I/O to the device

‒ Issue 'Task Set Abort'

‒ Block I/O to the target

‒ Issue I_T Nexus Reset

‒ Complete outstanding command on success

‒ Engage current EH strategy

‒ LUN Reset, Target Reset etc
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EH recovery strategy

abort
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SCSI EH discussion points
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Early command completion

• Complete commands after 'Abort Task Set'

• Unclear status if 'Abort Task Set' failed

• Easy way:
‒ Require LLDDs to not refer to outstanding commands after 

'Abort Task Set'

‒ But then 'Abort Task Set' cannot really fail, as this is the 
precise meaning of that function

• Complicated way:
‒ Keep the list of commands until one recovery step succeeds

• Best way still to be discussed
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Check recovery level status

• Each recovery level can succeed or fail

• 'Success' currently only means that the recovery step 
has executed

• It does not mean that the recovery step did anything to 
correct the situation

• Separate verification required

• Action depends on the recovery level



Thank you.
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Most recent sources are available at

git://github.com/hreinecke/scsi-devel
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