SMART MANUFACTURING
With Apache Spark Streaming and Deep Learning

Prajod Vettiyattil, Wipro
@prajods
https://in.linkedin.com/in/prajod
AGENDA

• Introduction
• Smart Manufacturing
• Applications
• Deep learning solution
• CNN
• Deeplearning4j (DL4J)
• Apache Spark
• Deploying machine learning
INTRODUCTION

- Industrialization
- Automation
- Scale
- Commoditization
- Accessibility
KEY POINT

Machines can do what humans can’t
SMART MANUFACTURING

- Holistic view of entire process
 - Sourcing to product sale
- Efficiency
- Eco friendliness
- Predict over react
- Autonomous machines
- Learning and AI
- Use data and analytics
APPLICATIONS

• Detecting overheating
 • Equipment
 • Finished products
• Glass defect detection
OVERHEATING

- Detect temperatures above defined boundaries
COOLING TOWER
ELECTRIC MOTOR
ELECTRIC MOTOR: OVERHEATING
OVERHEATING: LOWER RESOLUTION
ELECTRIC MOTOR: NORMAL VIEW
GLASS DEFECT
UNDER A DIFFERENT LIGHT
AUTOMATING DETECTION

• Machine learning
• Multivariate Analysis
 • Multiple categories of defects
• Deep Learning
DEEP LEARNING: WHAT

• Neural Network based Machine Learning
• Neural Network
 • 1 Input layer
 • 1 or more hidden layers
 • 1 Output layer
• Basic unit of NN
 • Neuron or Perceptron
• Combine perceptrons in many ways using multiple parameters
• Model parameters
• Hyperparameters

Image from: ucalgary.ca
DEEP LEARNING: WHY

• Can discern complex input patterns
• Higher accuracy than most other ML methods
 • for image analysis
• Ideally suited for spatial data analysis
• Higher time needed for training
• Parallel execution
• Higher level architectures for evolving needs
 • CNN, RNN, LSTM
CONVOLUTIONAL NEURAL NETWORKS
CONVOLUTIONAL NEURAL NETWORK

• Convolutional Neural Network (CNN)
• Convolve: mix two functions
 • Matrix multiplication and addition
 • Dot product
• Pass many filters over an image
• Image features
• Images are 3D features
• Discern the important features/signals
• Filter = kernel
CNN: APPLICATION

- Self driving cars
- Robotics
- Drones
- Industrial automation
- Physical security
- Medical labs
- Wherever images or videos are used
IMAGE FOR CONVOLUTION
CONVOLUTION

Filter matrix

Image
CNN ARCHITECTURE

1st Convolution → Non linear transform (ReLU, tanh etc) → Pooling

Nth Convolution → Non linear transform (ReLU, tanh etc) → Pooling

Fully connected layers → Output probabilities → Class probabilities

Feature extraction + dimension reduction

Classification
CNN PARAMETERS

- Model parameters
 - Filter values
 - Weights
 - Biases

- Hyperparameters
 - Activation function
 - # layers
 - # nodes in each layer
 - Filter size and count
 - Regularization
 - Convolution layers
 - Maxpooling layers

Learned by NN

Experience of designer
CNN: SAMPLE CODE

- MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
 .seed(seed).iterations(iterations).regularization(false).l2(0.003).activation("relu")
 .learningRate(0.0007).weightInit(WeightInit.XAVIER)
 .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 .updater(Updater.RMSPROP).momentum(0.9).list()
 .layer(0, convInit("cnn1", channels, 50, new int[]{5, 5}, new int[]{1, 1}, new int[]{0, 0, 0})
 .layer(1, maxPool("maxpool1", new int[]{2,2}))

 .layer(4, new DenseLayer.Builder().nOut(500).build())
 .layer(5, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
 .nOut(numLabels).activation("softmax").build())
 .backprop(true).pretrain(false).cnnInputSize(height, width, channels).build();
DEEPLEARNING4J (DL4J)

- Deep learning library
- Open source
- Apache 2.0 license
- Java based
- Distributed execution
- Runs on Spark and Hadoop
DEEPLEARNING4J: FEATURES

- ND4J
 - N Dimensional Arrays/Tensors
 - Like numpy
- Canova/DataVec
 - Data extraction, vectorization
- Arbitrre
 - Evaluate and tune models
- CPU or GPU
 - OpenBLAS, Intel MKL, Nvidia CUDA
DEEPLEARNING4J: SUPPORT

- Community support
 - https://gitter.im/deeplearning4j/deeplearning4j

- Commercial support
 - www.skymind.io
APACHE SPARK

• Incubated in 2009 at Berkeley University
• 100s of contributors
• Yahoo, Intel, UC Berkeley,…,50+ orgs
• 10 to 100 times faster than Hadoop MR
 • https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
APACHE SPARK

• Complements Hadoop
 • Replaces Hadoop MR
 • Adds
 • In memory processing
 • Stream processing
 • Interactive queries
• YARN or Mesos for clustering
• Java, Scala, Python, R
SPARK: LOGICAL VIEW

<table>
<thead>
<tr>
<th>Spark SQL</th>
<th>Spark Streaming</th>
<th>MLlib</th>
<th>GraphX</th>
</tr>
</thead>
</table>

Apache Spark Core
SPARK: DEPLOYMENT VIEW

Master Node

Spark Driver
Spark's Cluster Manager

Worker Node

Executor
Task
Cache

Executor
Task
Cache

Worker Node

Smart Manufacturing with Apache Spark and Deep Learning

@prajods
PARALLEL TRAINING: SPARK + DL4J

Data Split 1

Mini Batch 1

Averaged parameters from workers

Spark Master Node

Calculate model parameters

Spark Worker Node 1

Data Split 2

Mini Batch 2

Calculate model parameters

Spark Worker Node 2

Data
THE MACHINE LEARNING PROCESS
A LONG JOURNEY

Select problem
Non ML solution?
Analyze process
Data available?
Define success KPI

Classify ML type
Select 2 or 3 algo
Pick one
Gather data
Analyze data

Filter data
Convert data
Vectorize
Select hyperparams
Iterate hyperparams

Iterate data sets
Evaluate perform
Validation set
Deploy
Continuous eval

Smart Manufacturing with Apache Spark and Deep Learning

#apacheconbigdata @prajods
SELECT PROBLEM
GATHER AND FORMAT DATA
ITERATE WITH HYPERPARAMETERS AND DATA
CONTINUOUS EVALUATION
SUMMARY

• Automation and commoditization
• Humans and machines
• Beyond human capacity
• Application to product quality inspection
• Deep leaning and images: higher accuracy
• CNN
• DL4J + Spark
• The Machine Learning process
REFERENCES

- http://karpathy.github.io/neuralnets/
- https://deeplearning4j.org/convolutionalnets.html
- https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
Prajod Vettiyattil, Wipro
@prajods
https://in.linkedin.com/in/prajod