
Transactions in HBase

Andreas Neumann
ApacheCon Big Data May 2017

anew at apache.org
@caskoid

http://apache.org

Goals of this Talk

- Why transactions?
- Optimistic Concurrency Control
- Three Apache projects: Omid, Tephra, Trafodion
- How are they different?

2

Transactions in noSQL?
History
• SQL: RDBMS, EDW, …
• noSQL: MapReduce, HDFS, HBase, …
• n(ot)o(nly)SQL: Hive, Phoenix, …

Motivation:
• Data consistency under highly concurrent loads
• Partial outputs after failure
• Consistent view of data for long-running jobs
• (Near) real-time processing

3

Stream Processing

4

HBase
Table

...Queue ...

...

Flowlet

... ...

HBase
Table

...Queue ...

...

Flowlet

... ...

Write Conflict!

5

Transactions to the Rescue

6

HBase
Table

...Queue ...

...

Flowlet

- Atomicity of all writes involved
- Protection from concurrent update

ACID Properties

From good old SQL:

• Atomic - Entire transaction is committed as one
• Consistent - No partial state change due to failure
• Isolated - No dirty reads, transaction is only visible after commit
• Durable - Once committed, data is persisted reliably

7

What is HBase?

8

…

Client

Region Server

Region Region…
Coprocessor

Region Server

Region Region…
Coprocessor

What is HBase?

9

Simplified:

• Distributed Key-Value Store
• Key = <row>.<family>.<column>.<timestamp>
• Partitioned into Regions (= continuous range of rows)

• Each Region Server hosts multiple regions
• Optional: Coprocessor in Region Server

• Durable writes

ACID Properties in HBase

• Atomic
• At cell, row, and region level
• Not across regions, tables or multiple calls

• Consistent - No built-in rollback mechanism
• Isolated - Timestamp filters provide some level of isolation
• Durable - Once committed, data is persisted reliably

How to implement full ACID?

10

Implementing Transactions
• Traditional approach (RDBMS): locking

• May produce deadlocks
• Causes idle wait
• complex and expensive in a distributed env

• Optimistic Concurrency Control
• lockless: allow concurrent writes to go forward
• on commit, detect conflicts with other transactions
• on conflict, roll back all changes and retry

• Snapshot Isolation
• Similar to repeatable read
• Take snapshot of all data at transaction start
• Read isolation

11

Optimistic Concurrency Control

12

time

x=10client1: start fail/rollback

client2: start read x commit
must see the
old value of x

Optimistic Concurrency Control

13

time

incr xclient1: start commit

client2: start incr x commit

x=10

rollback

x=11

sees the old  
value of x=10

Conflicting Transactions

14

time

tx:A

tx:B
tx:C (A fails)

tx:D (A fails)

tx:E (E fails)
tx:F (F fails)

tx:G

Conflicting Transactions
• Two transactions have a conflict if

• they write to the same cell
• they overlap in time  

• If two transactions conflict, the one that commits later rolls back
• Active change set = set of transactions t such that:

• t is committed, and
• there is at least one in-flight tx t’ that started before t’s commit time  

• This change set is needed in order to perform conflict detection.

15

HBase Transactions in Apache

16

Apache Omid (incubating)

(incubating)

(incubating)

In Common
• Optimistic Concurrency Control must:

• maintain Transaction State:
• what tx are in flight and committed?
• what is the change set of each tx? (for conflict detection, rollback)
• what transactions are invalid (failed to roll back due to crash etc.)

• generate unique transaction IDs
• coordinate the life cycle of a transaction

• start, detect conflicts, commit, rollback

• All of { Omid, Tephra, Trafodion } implement this
• but vary in how they do it

17

Apache Tephra
• Based on the original Omid paper:

Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, Maysam Yabandeh: 
Omid: Lock-free transactional support for distributed data stores. ICDE 2014. 

• Transaction Manager:
• Issues unique, monotonic transaction IDs
• Maintains the set of excluded (in-flight and invalid) transactions
• Maintains change sets for active transactions
• Performs conflict detection

• Client:
• Uses transaction ID as timestamp for writes
• Filters excluded transactions for isolation
• Performs rollback

18

Transaction Lifecycle

19

in progress

start new tx

write
to

HBase

aborting

conflicts

invalid

failure

roll back
in HBase

ok

time
out

detect conflicts

ok

complete

make visible

• Transaction consists of:
• transaction ID (unique timestamp)
• exclude list (in-flight and invalid tx) 

• Transactions that do complete
• must still participate in conflict detection
• disappear from transaction state  
 when they do not overlap with in-flight tx 

• Transactions that do not complete
• time out (by transaction manager)
• added to invalid list

Apache Tephra

20

Tx 
ManagerClient A

HBase
Region Server

 x:10 37

write  
x=11

 x:11 42

Region Server

write:  
y=17

 y:17 42

in-flight:
 …

start() 
id: 42, excludes = {…}

,42

HBase

Apache Tephra

21

Tx 
Manager

read x

Client B

x:10

Region Server

 x:10 37

 x:11 42

Region Server

 y:17 42

in-flight:
 …,42

start() 
id: 48, excludes = {…,42} ,48

Region Server

HBase
Region Server

 x:10 37 y:17 42

Apache Tephra

22

Tx 
ManagerClient A

 x:11 42

roll back

commit() 
conflict

 x:10 37

in-flight:
 …,42

in-flight:
 …

make  
visible

HBase

Apache Tephra

23

Region Server

 x:10 37

 x:11 42

Region Server

 y:17 42

read x

x:11

Tx 
ManagerClient A

in-flight:
 …,42

commit() 
success

in-flight:
 …Client C start() 

id: 52, excludes: {…}
in-flight:

 …,52

Apache Tephra

24

…

Client

Region Server

Region Region…
Coprocessor

Region Server

Region Region…
Coprocessor

HBase

Tx 
Manager

Tx id generation
Tx lifecycle  

rollback
Tx state

lifecycle  
transitions

data  
operations

Apache Tephra
• HBase coprocessors

• For efficient visibility filtering (on region-server side)
• For eliminating invalid cells on flush and compaction

• Programming Abstraction
• TransactionalHTable:

• Implements HTable interface
• Existing code is easy to port

• TransactionContext:
• Implements transaction lifecycle

25

Apache Tephra - Example
txTable = new TransactionAwareHTable(table);  
txContext = new TransactionContext(txClient, txTable);  
txContext.start();
try {  
 // perform Hbase operations in txTable
 txTable.put(…);
 ...
} catch (Exception e) {
 // throws TransactionFailureException(e)  
 txContext.abort(e);
}
// throws TransactionConflictException if so  
txContext.finish();

26

Apache Tephra - Strengths
• Compatible with existing, non-tx data in HBase
• Programming model

• Same API as HTable, keep existing client code
• Conflict detection granularity

• Row, Column, Off
• Special “long-running tx” for MapReduce and similar jobs

• HA and Fault Tolerance
• Checkpoints and WAL for transaction state, Standby Tx Manager

• Replication compatible
• Checkpoint to HBase, use HBase replication

• Secure, Multi-tenant

27

Apache Tephra - Not-So Strengths
• Exclude list can grow large over time

• RPC, post-filtering overhead
• Solution: Invalid tx pruning on compaction - complex!

• Single Transaction Manager
• performs all lifecycle state transitions, including conflict detection
• conflict detection requires lock on the transaction state
• becomes a bottleneck
• Solution: distributed Transaction Manager with consensus protocol

28

Apache Trafodion
• A complete distributed database (RDBMS)

• transaction system is not available by itself
• APIs: jdbc, SQL

• Inspired by original HBase TRX (transactional region server
• migrated transaction logic into coprocessors
• coprocessors cache in-flight data in-memory
• transaction state (change sets) in coprocessors
• conflict detection with 2-phase commit

• Transaction Manager
• orchestrates transaction lifecycle across involved region servers
• multiple instances, but one per client

29

(incubating)

Apache Trafodion

30

Apache Trafodion

31

Tx 
ManagerClient A

HBase
Region Server

 x:10

Region Server

in-flight:
 …

start() 
id:42

,42write:  
y=17

 y:17

write  
x=11

 x:11

region: 
…

,42

Apache Trafodion

32

Tx 
Manager

read x

Client B

x:10

in-flight:
 …,42

start() 
id: 48 ,48

HBase
Region Server

 x:10

Region Server
 x:11 y:17

HBase

Apache Trafodion

33

Tx 
ManagerClient A

1. conflicts?

commit() 

in-flight:
 …,42

in-flight:
 …

Region Server

 x:10

Region Server
 x:11 y:17

2. roll back

HBase

Apache Trafodion

34

Tx 
ManagerClient A

1. conflicts?

commit() 

in-flight:
 …,42

in-flight:
 …

Region Server

 x:10

Region Server
 x:11 y:17

2. commit!

 x:11 y:17

HBase

Apache Trafodion

35

Client

Region Server

Region Region…
Coprocessor

Region Server

Region Region…
Coprocessor

Tx 
Manager

Tx id generation

conflicts
Tx state

Tx life cycle (commit)

transitions 
region ids

2-phase  
commit

data  
operations

Tx lifecycle

In-flight data

Client 2 Tx 2
Manager

Apache Trafodion
• Scales well:

• Conflict detection is distributed: no single bottleneck
• Commit coordination by multiple transaction managers
• Optimization: bypass 2-hase commit if single region

• Coprocessors cache in-flight data in Memory
• Flushed to HBase only on commit
• Committed read (not snapshot, not repeatable read)
• Option: cause conflicts for reads, too

• HA and Fault Tolerance
• WAL for all state
• All services are redundant and take over for each other

• Replication: Only in paid (non-Apache) add-on

36

Apache Trafodion - Strengths
• Very good scalability

• Scales almost linearly
• Especially for very small transactions

• Familiar SQL/jdbc interface for RDB programmers
• Redundant and fault-tolerant
• Secure and multi-tenant:

• Trafodion/SQL layer provides authn+authz

37

Apache Trafodion - Not-So Strengths
• Monolithic, not available as standalone transaction system
• Heavy load on coprocessors

• memory and compute
• Large transactions (e.g., MapReduce) will cause Out-of-memory

• no special support for long-running transactions

38

Apache Omid
• Evolution of Omid based on the Google Percolator paper:

Daniel Peng, Frank Dabek: Large-scale Incremental Processing Using
Distributed Transactions and Notifications, USENIX 2010.  

• Idea: Move as much transaction state as possible into HBase
• Shadow cells represent the state of a transaction
• One shadow cell for every data cell written
• Track committed transactions in an HBase table
• Transaction Manager (TSO) has only 3 tasks

• issue transaction IDs
• conflict detection
• write to commit table

39

Apache Omid

40

Apache Omid

41

Tx 
Manager

Client A start() 
id: 42

HBase
Region Server

 x:10 37: commit.40

write  
x=11

 x:11 42: in-flight

Region Server Commits 

 37: 40

write:  
y=17

 y:17 42: in-flight

HBase

Apache Omid

42

Tx 
Managerstart() 

id: 48

read x

Client B

x:10

Region Server

 x:10 37: commit.40

 x:11 42: in-flight

Region Server

 y:17

Commits 

 37: 40 42: in-flight

Region Server

HBase
Region Server

 x:10 37: commit.40 y:17 42: in-flight

Apache Omid

43

Tx 
Manager

Client A

Commits 

 37: 40

 x:11 42: in-flight

roll back

commit() 
conflict

 x:10 37: commit.40

HBase

Apache Omid

44

Region Server

Tx 
Manager

Client A

Client C start() 
id: 52

 x:10 37: commit.40

 x:11 42: in-flight

Region Server

 y:17

Commits 

 37: 40 42: in-flight

mark as 
 committed

 42: commit.50

 42: commit.50

read x

x:11

commit() 
success:50

 42: 50

Apache Omid - Future
• Atomic commit with linking?

• Eliminate need for commit table

45

HBase
Region Server

 x:10 37: commit.40

 x:11 42: in-flight

Region Server Commits 

 37: 40 y:17

HBase

Apache Omid

46

Client

Region Server

Region Region…
Coprocessor

Region Server

Region Region…
Coprocessor

Tx 
Manager

Tx id generation
Conflict detection

start 
commit

data  
operations 

+ shadow cells

Tx state

Tx lifecycle  
rollback
commit

commit 
table

Apache Omid - Strengths
• Transaction state is in the database

• Shadow cells plus commit table
• Scales with the size of the cluster

• Transaction Manager is lightweight
• Generation of tx IDs delegated to timestamp oracle
• Conflict detection
• Writing to commit table

• Fault Tolerance:
• After failure, fail all existing transactions attempting to commit
• Self-correcting: Read clients can delete invalid cells

47

Apache Omid - Not So Strengths
• Storage intensive - shadow cells double the space
• I/O intensive - every cell requires two writes

1. write data and shadow cell
2. record commit in shadow cell

• Reads may also require two reads from HBase (commit table)
• Producer/Consumer: will often find the (uncommitted) shadow cell

• Scans: high througput sequential read disrupted by frequent lookups
• Security/Multi-tenancy:

• All clients need access to commit table
• Read clients need write access to repair invalid data

• Replication: Not implemented

48

Summary

49

Apache Tephra Apache Trafodion Apache Omid

Tx State Tx Manager Distributed to  
region servers

Tx Manager (changes)
HBase (shadows/commits)

Conflict detection Tx Manager Distributed to regions, 2-
phase commit Tx Manager

ID generation Tx Manager Distributed to multiple
Tx Managers Tx Manager

API HTable SQL Custom
Multi-tenant Yes Yes No
Strength Scans, Large Tx, API  Scalable, full SQL Scale, throughput
So so Scale, Throughput API not Hbase, Large Tx Scans, Producer/Consumer

Links
Join the community:

50

Apache Omid (incubating) 
http://omid.apache.org/

(incubating) 
http://trafodion.apache.org/

(incubating) 
http://tephra.apache.org/

Thank you
… for listening to my talk.

Credits:
- Sean Broeder, Narendra Goyal (Trafodion)
- Francisco Perez-Sorrosal (Omid)

51

Questions?

