

Transactions in HBase

Andreas Neumann ApacheCon Big Data May 2017

anew at apache.org @caskoid

Goals of this Talk

- Why transactions?
- Optimistic Concurrency Control
- Three Apache projects: Omid, Tephra, Trafodion
- How are they different?

Transactions in noSQL?

History

- SQL: RDBMS, EDW, ...
- noSQL: MapReduce, HDFS, HBase, ...
- n(ot)o(nly)SQL: Hive, Phoenix, ...

Motivation:

- Data consistency under highly concurrent loads
- Partial outputs after failure
- Consistent view of data for long-running jobs
- (Near) real-time processing

Stream Processing

Write Conflict!

Transactions to the Rescue

- Atomicity of all writes involved
- Protection from concurrent update

ACID Properties

From good old SQL:

- Atomic Entire transaction is committed as one
- Consistent No partial state change due to failure
- · Isolated No dirty reads, transaction is only visible after commit
- Durable Once committed, data is persisted reliably

What is HBase?

What is HBase?

Simplified:

- Distributed Key-Value Store
- Key = <row>.<family>.<column>.<timestamp>
- Partitioned into Regions (= continuous range of rows)
- Each Region Server hosts multiple regions
- Optional: Coprocessor in Region Server
- Durable writes

ACID Properties in HBase

- Atomic
 - At cell, row, and region level
 - Not across regions, tables or multiple calls
- Consistent No built-in rollback mechanism
- Isolated Timestamp filters provide some level of isolation
- Durable Once committed, data is persisted reliably

How to implement full ACID?

Implementing Transactions

- Traditional approach (RDBMS): locking
 - May produce deadlocks
 - Causes idle wait
 - complex and expensive in a distributed env
- Optimistic Concurrency Control
 - lockless: allow concurrent writes to go forward
 - on commit, detect conflicts with other transactions
 - on conflict, roll back all changes and retry
- Snapshot Isolation
 - Similar to repeatable read
 - Take snapshot of all data at transaction start
 - Read isolation

Optimistic Concurrency Control

Optimistic Concurrency Control

Conflicting Transactions

Conflicting Transactions

- Two transactions have a conflict if
 - they write to the same cell
 - they overlap in time
- If two transactions conflict, the one that commits later rolls back
- Active change set = set of transactions t such that:
 - t is committed, and
 - there is at least one in-flight tx t' that started before t's commit time
- This change set is needed in order to perform conflict detection.

HBase Transactions in Apache

(incubating)

Apache Omid (incubating)

In Common

- Optimistic Concurrency Control must:
 - maintain Transaction State:
 - what tx are in flight and committed?
 - what is the change set of each tx? (for conflict detection, rollback)
 - what transactions are invalid (failed to roll back due to crash etc.)
 - generate unique transaction IDs
 - coordinate the life cycle of a transaction
 - start, detect conflicts, commit, rollback
- All of { Omid, Tephra, Trafodion } implement this
 - but vary in how they do it

Based on the original Omid paper:

Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, Maysam Yabandeh: *Omid: Lock-free transactional support for distributed data stores.* ICDE 2014.

- Transaction Manager:
 - Issues unique, monotonic transaction IDs
 - Maintains the set of excluded (in-flight and invalid) transactions
 - Maintains change sets for active transactions
 - Performs conflict detection
- Client:
 - Uses transaction ID as timestamp for writes
 - Filters excluded transactions for isolation
 - Performs rollback

Transaction Lifecycle

- Transaction consists of:
 - transaction ID (unique timestamp)
 - exclude list (in-flight and invalid tx)
- Transactions that do complete
 - must still participate in conflict detection
 - disappear from transaction state when they do not overlap with in-flight tx
- Transactions that do not complete
 - time out (by transaction manager)
 - added to invalid list

- HBase coprocessors
 - For efficient visibility filtering (on region-server side)
 - For eliminating invalid cells on flush and compaction
- Programming Abstraction
 - TransactionalHTable:
 - Implements HTable interface
 - Existing code is easy to port
 - TransactionContext:
 - Implements transaction lifecycle

Apache Tephra - Example

```
txTable = new TransactionAwareHTable(table);
txContext = new TransactionContext(txClient, txTable);
txContext.start();
try {
  // perform Hbase operations in txTable
  txTable.put(...);
  • • •
} catch (Exception e) {
  // throws TransactionFailureException(e)
  txContext.abort(e);
// throws TransactionConflictException if so
txContext.finish();
```


Apache Tephra - Strengths

- Compatible with existing, non-tx data in HBase
- Programming model
 - Same API as HTable, keep existing client code
- Conflict detection granularity
 - Row, Column, Off
 - Special "long-running tx" for MapReduce and similar jobs
- HA and Fault Tolerance
 - Checkpoints and WAL for transaction state, Standby Tx Manager
- Replication compatible
 - Checkpoint to HBase, use HBase replication
- Secure, Multi-tenant

Apache Tephra - Not-So Strengths

- Exclude list can grow large over time
 - RPC, post-filtering overhead
 - Solution: Invalid tx pruning on compaction complex!
- Single Transaction Manager
 - performs all lifecycle state transitions, including conflict detection
 - conflict detection requires lock on the transaction state
 - becomes a bottleneck
 - Solution: distributed Transaction Manager with consensus protocol

- A complete distributed database (RDBMS)
 - transaction system is not available by itself
 - APIs: jdbc, SQL
- Inspired by original HBase TRX (transactional region server)
 - migrated transaction logic into coprocessors
 - coprocessors cache in-flight data in-memory
 - transaction state (change sets) in coprocessors
 - conflict detection with 2-phase commit
- Transaction Manager
 - orchestrates transaction lifecycle across involved region servers
 - multiple instances, but one per client

- Scales well:
 - Conflict detection is distributed: no single bottleneck
 - Commit coordination by multiple transaction managers
 - Optimization: bypass 2-hase commit if single region
- Coprocessors cache in-flight data in Memory
 - Flushed to HBase only on commit
 - Committed read (not snapshot, not repeatable read)
 - Option: cause conflicts for reads, too
- HA and Fault Tolerance
 - WAL for all state
 - All services are redundant and take over for each other
- Replication: Only in paid (non-Apache) add-on

Apache Trafodion - Strengths

- Very good scalability
 - Scales almost linearly
 - Especially for very small transactions
- Familiar SQL/jdbc interface for RDB programmers
- Redundant and fault-tolerant
- Secure and multi-tenant:
 - Trafodion/SQL layer provides authn+authz

Apache Trafodion - Not-So Strengths

- Monolithic, not available as standalone transaction system
- Heavy load on coprocessors
 - memory and compute
- Large transactions (e.g., MapReduce) will cause Out-of-memory
 - no special support for long-running transactions

Evolution of Omid based on the Google Percolator paper:

Daniel Peng, Frank Dabek: Large-scale Incremental Processing Using Distributed Transactions and Notifications, USENIX 2010.

- Idea: Move as much transaction state as possible into HBase
 - Shadow cells represent the state of a transaction
 - One shadow cell for every data cell written
 - Track committed transactions in an HBase table
 - Transaction Manager (TSO) has only 3 tasks
 - issue transaction IDs
 - conflict detection
 - write to commit table

Apache Omid - Future

- Atomic commit with linking?
 - Eliminate need for commit table

Apache Omid - Strengths

- Transaction state is in the database
 - Shadow cells plus commit table
 - Scales with the size of the cluster
- Transaction Manager is lightweight
 - Generation of tx IDs delegated to timestamp oracle
 - Conflict detection
 - Writing to commit table
- Fault Tolerance:
 - After failure, fail all existing transactions attempting to commit
 - Self-correcting: Read clients can delete invalid cells

Apache Omid - Not So Strengths

- Storage intensive shadow cells double the space
- I/O intensive every cell requires two writes
 - 1. write data and shadow cell
 - 2. record commit in shadow cell
- Reads may also require two reads from HBase (commit table)
- Producer/Consumer: will often find the (uncommitted) shadow cell
 - Scans: high throughput sequential read disrupted by frequent lookups
- Security/Multi-tenancy:
 - All clients need access to commit table
 - Read clients need write access to repair invalid data
- Replication: Not implemented

Summary

	Apache Tephra	Apache Trafodion	Apache Omid
Tx State	Tx Manager	Distributed to region servers	Tx Manager (changes) HBase (shadows/commits)
Conflict detection	Tx Manager	Distributed to regions, 2- phase commit	Tx Manager
ID generation	Tx Manager	Distributed to multiple Tx Managers	Tx Manager
API	HTable	SQL	Custom
Multi-tenant	Yes	Yes	No
Strength	Scans, Large Tx, API	Scalable, full SQL	Scale, throughput
Soso	Scale, Throughput	API not Hbase, Large Tx	Scans, Producer/Consumer

Links

Join the community:

(incubating)
http://tephra.apache.org/

http://trafodion.apache.org/

Apache Omid (incubating) http://omid.apache.org/

Thank you

... for listening to my talk.

Credits:

- Sean Broeder, Narendra Goyal (Trafodion)
- Francisco Perez-Sorrosal (Omid)

Questions?

