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Goals of this Talk

- Why transactions?
- Optimistic Concurrency Control
- Three Apache projects: Omid, Tephra, Trafodion
- How are they different?
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Transactions in noSQL?
History
• SQL: RDBMS, EDW, …
• noSQL: MapReduce, HDFS, HBase, …
• n(ot)o(nly)SQL: Hive, Phoenix, …

Motivation: 
• Data consistency under highly concurrent loads
• Partial outputs after failure
• Consistent view of data for long-running jobs
• (Near) real-time processing
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Stream Processing
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Write Conflict!
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Transactions to the Rescue
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- Atomicity of all writes involved
- Protection from concurrent update



ACID Properties 

From good old SQL:

• Atomic - Entire transaction is committed as one
• Consistent - No partial state change due to failure
• Isolated - No dirty reads, transaction is only visible after commit
• Durable - Once committed, data is persisted reliably
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What is HBase?
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What is HBase?
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Simplified:

• Distributed Key-Value Store
• Key = <row>.<family>.<column>.<timestamp>
• Partitioned into Regions (= continuous range of rows)

• Each Region Server hosts multiple regions
• Optional: Coprocessor in Region Server

• Durable writes



ACID Properties in HBase

• Atomic
• At cell, row, and region level
• Not across regions, tables or multiple calls

• Consistent - No built-in rollback mechanism
• Isolated - Timestamp filters provide some level of isolation
• Durable - Once committed, data is persisted reliably

How to implement full ACID?
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Implementing Transactions
• Traditional approach (RDBMS): locking

• May produce deadlocks
• Causes idle wait
• complex and expensive in a distributed env

• Optimistic Concurrency Control
• lockless: allow concurrent writes to go forward
• on commit, detect conflicts with other transactions
• on conflict, roll back all changes and retry

• Snapshot Isolation
• Similar to repeatable read
• Take snapshot of all data at transaction start
• Read isolation
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Optimistic Concurrency Control
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Optimistic Concurrency Control
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Conflicting Transactions
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Conflicting Transactions
• Two transactions have a conflict if

• they write to the same cell
• they overlap in time  

• If two transactions conflict, the one that commits later rolls back
• Active change set = set of transactions t such that:

• t is committed, and
• there is at least one in-flight tx t’ that started before t’s commit time  

• This change set is needed in order to perform conflict detection. 
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HBase Transactions in Apache

16

Apache Omid (incubating)

(incubating)

(incubating)



In Common
• Optimistic Concurrency Control must:

• maintain Transaction State:
• what tx are in flight and committed?
• what is the change set of each tx? (for conflict detection, rollback)
• what transactions are invalid (failed to roll back due to crash etc.)

• generate unique transaction IDs
• coordinate the life cycle of a transaction

• start, detect conflicts, commit, rollback

• All of { Omid, Tephra, Trafodion } implement this
• but vary in how they do it
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Apache Tephra
• Based on the original Omid paper:

Daniel Gómez Ferro, Flavio Junqueira, Ivan Kelly, Benjamin Reed, Maysam Yabandeh: 
Omid: Lock-free transactional support for distributed data stores. ICDE 2014. 

• Transaction Manager:
• Issues unique, monotonic transaction IDs
• Maintains the set of excluded (in-flight and invalid) transactions 
• Maintains change sets for active transactions
• Performs conflict detection

• Client: 
• Uses transaction ID as timestamp for writes
• Filters excluded transactions for isolation
• Performs rollback
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Transaction Lifecycle
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in progress

start new tx

write
to
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aborting
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failure
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time
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• Transaction consists of:
• transaction ID (unique timestamp)
• exclude list (in-flight and invalid tx) 

• Transactions that do complete
• must still participate in conflict detection
• disappear from transaction state  
 when they do not overlap with in-flight tx 

• Transactions that do not complete
• time out (by transaction manager)
• added to invalid list



Apache Tephra
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HBase

Apache Tephra
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Region Server

HBase
Region Server
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Apache Tephra
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HBase

Apache Tephra
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Apache Tephra
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Apache Tephra
• HBase coprocessors

• For efficient visibility filtering (on region-server side)
• For eliminating invalid cells on flush and compaction

• Programming Abstraction
• TransactionalHTable: 

• Implements HTable interface
• Existing code is easy to port

• TransactionContext:
• Implements transaction lifecycle
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Apache Tephra - Example
txTable = new TransactionAwareHTable(table);  
txContext = new TransactionContext(txClient, txTable);  
txContext.start();
try {  
  // perform Hbase operations in txTable
  txTable.put(…);
  ...
} catch (Exception e) {
  // throws TransactionFailureException(e)  
  txContext.abort(e);
}
// throws TransactionConflictException if so  
txContext.finish(); 
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Apache Tephra - Strengths
• Compatible with existing, non-tx data in HBase
• Programming model

• Same API as HTable, keep existing client code
• Conflict detection granularity

• Row, Column, Off
• Special “long-running tx” for MapReduce and similar jobs

• HA and Fault Tolerance
• Checkpoints and WAL for transaction state, Standby Tx Manager

• Replication compatible
• Checkpoint to HBase, use HBase replication

• Secure, Multi-tenant
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Apache Tephra - Not-So Strengths
• Exclude list can grow large over time

• RPC, post-filtering overhead
• Solution: Invalid tx pruning on compaction - complex!

• Single Transaction Manager
• performs all lifecycle state transitions, including conflict detection
• conflict detection requires lock on the transaction state
• becomes a bottleneck
• Solution: distributed Transaction Manager with consensus protocol
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Apache Trafodion
• A complete distributed database (RDBMS) 

• transaction system is not available by itself
• APIs: jdbc, SQL

• Inspired by original HBase TRX (transactional region server
• migrated transaction logic into coprocessors 
• coprocessors cache in-flight data in-memory
• transaction state (change sets) in coprocessors
• conflict detection with 2-phase commit

• Transaction Manager 
• orchestrates transaction lifecycle across involved region servers
• multiple instances, but one per client
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Apache Trafodion
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Apache Trafodion
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Apache Trafodion
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HBase

Apache Trafodion
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HBase

Apache Trafodion
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HBase
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Apache Trafodion
• Scales well: 

• Conflict detection is distributed: no single bottleneck
• Commit coordination by multiple transaction managers
• Optimization: bypass 2-hase commit if single region

• Coprocessors cache in-flight data in Memory
• Flushed to HBase only on commit
• Committed read (not snapshot, not repeatable read)
• Option: cause conflicts for reads, too

• HA and Fault Tolerance
• WAL for all state
• All services are redundant and take over for each other

• Replication: Only in paid (non-Apache) add-on
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Apache Trafodion - Strengths
• Very good scalability

• Scales almost linearly
• Especially for very small transactions

• Familiar SQL/jdbc interface for RDB programmers
• Redundant and fault-tolerant
• Secure and multi-tenant: 

• Trafodion/SQL layer provides authn+authz

37



Apache Trafodion - Not-So Strengths
• Monolithic, not available as standalone transaction system 
• Heavy load on coprocessors 

• memory and compute
• Large transactions (e.g., MapReduce) will cause Out-of-memory

• no special support for long-running transactions
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Apache Omid
• Evolution of Omid based on the Google Percolator paper:

Daniel Peng, Frank Dabek: Large-scale Incremental Processing Using 
Distributed Transactions and Notifications, USENIX 2010.  

• Idea: Move as much transaction state as possible into HBase
• Shadow cells represent the state of a transaction
• One shadow cell for every data cell written
• Track committed transactions in an HBase table
• Transaction Manager (TSO) has only 3 tasks

• issue transaction IDs
• conflict detection
• write to commit table
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Apache Omid

40



Apache Omid
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HBase
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Region Server
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Apache Omid
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HBase

Apache Omid
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Apache Omid - Future
• Atomic commit with linking?

• Eliminate need for commit table
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HBase
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Apache Omid - Strengths
• Transaction state is in the database 

• Shadow cells plus commit table
• Scales with the size of the cluster

• Transaction Manager is lightweight
• Generation of tx IDs delegated to timestamp oracle
• Conflict detection
• Writing to commit table

• Fault Tolerance:
• After failure, fail all existing transactions attempting to commit
• Self-correcting: Read clients can delete invalid cells
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Apache Omid - Not So Strengths
• Storage intensive - shadow cells double the space
• I/O intensive - every cell requires two writes

1.  write data and shadow cell
2.  record commit in shadow cell

• Reads may also require two reads from HBase (commit table)
• Producer/Consumer: will often find the (uncommitted) shadow cell

• Scans: high througput sequential read disrupted by frequent lookups
• Security/Multi-tenancy: 

• All clients need access to commit table 
• Read clients need write access to repair invalid data

• Replication: Not implemented
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Summary
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Apache Tephra Apache Trafodion Apache Omid

Tx State Tx Manager Distributed to  
region servers

Tx Manager (changes) 
HBase (shadows/commits)

Conflict detection Tx Manager Distributed to regions, 2-
phase commit Tx Manager

ID generation Tx Manager Distributed to multiple
Tx Managers Tx Manager

API HTable SQL Custom
Multi-tenant Yes Yes No
Strength Scans, Large Tx, API  Scalable, full SQL Scale, throughput
So so Scale, Throughput API not Hbase, Large Tx Scans, Producer/Consumer



Links
Join the community:
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Apache Omid (incubating) 
http://omid.apache.org/

(incubating) 
http://trafodion.apache.org/

(incubating) 
http://tephra.apache.org/



Thank you
… for listening to my talk.

Credits: 
- Sean Broeder, Narendra Goyal (Trafodion)
- Francisco Perez-Sorrosal (Omid)
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Questions?


