
VT-d Posted Interrupts

Feng Wu, Jun Nakajima <Speaker>

Intel Corporation

2

Agenda

•  Motivation
•  Difference btw CPU-based and VT-d Posted Interrupts

•  Architecture

•  Implementation Details
•  Performance

•  Summary

3

•  Interrupt virtualization efficiency

•  Interrupt migration complexity

•  Big requirement of host vector for different assigned devices

Motivation

4

CPU-based Posted-Interrupt in Xen

VCPU0
running on

Physical CPU 0

External
interrupt

VCPU1
running on

physical CPU 1

Set bit for guest Vector in

Posted-interrupt requests (PIR)
of VCPU1

•  External interrupt handling

VM Exit

Guest IPI:
Notification Event

-  No need to kick VCPU1
-  Notification Event is handled by

VCPU1 in non-root mode
-  vIRR is updated by H/W and

delivered by “virtual interrupt
delivery” mechanism

-  VM-Exit is eliminated

Xen

5

Key Data Structures for CPU-based Posted-
Interrupt Processing

• Posted-interrupt notification vector:
− Send virtual interrupts to guests w/o VM exit
− If physical vector == Posted-interrupt

notification vector (VMCS field)

• PIR (Posted-interrupt requests)
− Set bits for guest vectors in advance

• ON (Outstanding Notification)
− If this bit is set, there is a notification outstanding

for one or more posted interrupts

Virtual-APIC
Page

Posted-interrupt
notification vector

PI Desc.
Address

PIR

Posted-interrupt
Descriptor

ON

5

VMCS

6

CPU-based Posted-Interrupt in Xen – cont’d

VCPU1
running on

physical CPU 1

Set bit for guest Vector in

Posted-interrupt requests (PIR)
of VCPU1

•  Virtual interrupts from QEMU

Guest IPI:
Notification Event

Virtual Devices

QEMU
Virtual interrupts
- Virtual MSI
- Virtual IOAPIC

Xen

-  No need to kick VCPU1
-  Notification Event is handled by

VCPU1 in non-root mode
-  vIRR is updated by H/W and

delivered by “virtual interrupt
delivery” mechanism

-  VM-Exit is eliminated

7

What’s new for VT-d Posted-Interrupts

 VCPU1
running on

physical CPU 1

Direct-assigned
Device

VT-d Engine
with

Posted-Interrupt support

External Interrupts

Notification Event

-  No need to kick VCPU1
-  Notification Event is handled by

VCPU1 in non-root mode
-  vIRR is updated by H/W and

delivered by “virtual interrupt
delivery” mechanism

-  VM-Exit is eliminated

No VMM overhead
AT ALL!

8

VT-d Posted-Interrupts Architecture
Virtual Processor A

VMCS
vAPIC Page

Posted Descriptor

CPU 0 CPU 1

Virtual Processor B

VMCS
vAPIC Page

Virtual Processor C

VMCS
Posted Descriptor

Interrupt
Remapping Table

IRTE for Interrupt Z

IRTE for Interrupt Y

IRTE for Interrupt X

IRTE for Interrupt N

External Interrupts

Notification
Event

Notification
Event

Posted Descriptor

vAPIC Page

Notification
Event

CPU 0 Host-Vectors

Other Vectors (e.g. Hyp. IPIs)

Notification Vector for vCPU B

Notification Vector for vCPU A

Other Vectors (e.g. Timer)

CPU 1 Host-Vectors

Other Vectors (e.g. Hyp. IPIs)

Notification Vector for vCPU C

Other Vectors (e.g. Timer)

9

Xen Implementation Details:

•  Update IRET according to guest’s modification to the
interrupt configuration (MSI address, data)

•  Interrupt migration during VCPU scheduling

10

Xen Implementation: IRTE update

QEMU

Xen

VCPU

Interrupt configuration update
(e.g. MSI/MSIx)

Hypercall
XEN_DOMCTL_bind_pt_irq!

Update the guest information in
IRTE
- Guest vector
- Posted-interrupt descriptor
address

No changes needed
for this part

Changes happen here

11

Xen Implementation: VCPU Scheduling

RUNSTATE_runnable RUNSTATE_blocked

RUNSTATE_running

‘SN’ – Set
‘NV’ –Notification vector

‘SN’ – Clear
‘NDST’ – New
physical CPU of the
VCPU

‘SN’ – Set
‘NV’ –Wakeup vector

‘SN’ – Set
‘NV’ –Notification vector

‘SN’ – Set
‘NV’ –Wakeup vector

PIR [0 - 255]	

Posted-Interrupt Descriptor	

NV	 SN	

NV – Host vector for Notification Event
SN – If set, suppress Notification Event 	

12

•  VT-d Posted-interrupts advantages
–  External interrupts from direct-assigned devices are delivered to guest

running in non-root mode directly
–  Improve Interrupt virtualization efficiency, e.g. Less VM-Exits.
–  Simplify interrupt migration
–  Consume less physical interrupts

•  Performance

•  The Specification will be published very soon
–  Can be found in Intel website

Summary

13

Thank YOU!
Q & A

Or contact
Feng Wu <feng.wu@intel.com>

14

Back up

15

•  Interrupt-remap-table-entry (IRTE) enhanced as follows:
-  An existing reserved bit claimed to indicated Posted-interrupt (PST)
-  Software may choose to “remap” or “post” each interrupt independently

•  IRTEs with ‘PST’ set are interpreted per below format

-  New Fields
•  Descriptor Address: the address of the posted-interrupt descriptor
•  Virtual Vector: the guest vector of the interrupt
•  URG: indicates if the interrupt is urgent

-  Other fields continue to have the same meaning

VT-d Posted-Interrupts Support

16

Posted-interrupt Descriptor

17

VT-d: Steps for Interrupt Posting
Read IRTE

Interrupt
Remapping

‘PST’ == 1

Read Posted-interrupt descriptor (locking the cache-line)

N

Set guest virtual in PIR

(‘ON’ == 0)
&&

(‘URG’ == 1 || ‘SN’ == 0)

Y

Set ‘ON’ and Generate notification event

Unlock cache-line
N

Unlock cache-line

Y

Y

