
Vhost and VIOMMU

Jason Wang <jasowang@redhat.com>
(Wei Xu <wexu@redhat.com>)

Peter Xu <peterx@redhat.com>

08/18/16 VHOST AND VIOMMU 2

Agenda

● IOMMU & Qemu vIOMMU background
● Motivation of secure virtio
● DMAR (DMA Remapping)

– Design Overview

– Implementation illustration

– Performance optimization – vhost device iotlb
● IR (Interrupt Remapping)
● Performance results & status

08/18/16 VHOST AND VIOMMU 3

● What is IOMMU?

– A hardware component provides two main functions: IO Translation and Device Isolation.
● How IO Translation and Device Isolation are supported by IOMMU

– DMA Remapping(DMAR), IO space address presented by devices are translated to

physical address coupled with access permission on the fly, so the ability of devices

are limited to access specific regions of memory.

– Interrupt Remapping (IR), Some architectures also support interrupt remapping, in a

manner similar to memory remapping.
● What's qemu vIOMMU?

– An emulated IOMMU which behaves as a real one.

– The functionality is always a subset of a physical unit depending on implementation.

– Only Intel, ppc, sun4m iommus are support in qemu currently.

IOMMU & Qemu vIOMMU Revisit

08/18/16 VHOST AND VIOMMU 4

IOMMU and vIOMMU

Memory

vIOMMU

Emulated
Devices

vCPU

vMMU

VM

Memory

vIOMMU

Emulated
Devices

vCPU

vMMU

VM

HOST

Host Memory

IOMMU MMU

Hardware Devices CPU

08/18/16 VHOST AND VIOMMU 5

Motivation

● Security, Securtiy and security.
● DPDK: The Userspace Polling-Mode drivers (DPDK)

for virtio net devices are vastly used in NFV.
● Vhost is the popular backend for most of user cases.
● Vhost is still out of IOMMU scope.

DMA Remapping (DMAR)

08/18/16 VHOST AND VIOMMU 7

gpa

Virtio-Net BackendsVring

Vhost-netVhost-user

Other virtio-net backends

tx/rx

Memory APIVirtio-Net

gpa

Qemu

Virtio-Net Device Address Space Overview

Guest

Virtio-Net
Backend Service

gpa-to-hva

Guest pages

08/18/16 VHOST AND VIOMMU 8

iova

Virtio-Net BackendsVring

Vhost-netVhost-user

Other virtio-net backends

tx/rx

IOMMU Driver
vIOMMU IOTLB API

dma api

iotlb entry lookup

Memory APIVirtio-Net

iova

Qemu

Design of Secure Virtio-Net Device Driver
Guest

Virtio-Net Backend Service

iova-to-hva

Guest Pages

08/18/16 VHOST AND VIOMMU 9

Implementation: Guest

● Guest
– Boot guest with a vIOMMU assigned.

– VIRTIO_F_IOMMU_PLATFORM, if this feature bit is provided in the
device, then the guest virtio driver is forced to use dma
api to manage all corresponding dma memory access, otherwise
the device will be disabled by system compulsorily.

08/18/16 VHOST AND VIOMMU 10

Implementation: Qemu and Backends

● Qemu
– DMA address translation for vIOMMU has been fully

 supported, unfortunately, virtio-pci devices is still using
 memory address space and never use iova at all,
 switch to use dma address(iova).

● Backends
– All address access to vring must be translated from

 guest iova to hva, this is done via iotlb lookup with
 interfering of vIOMMU.

08/18/16 VHOST AND VIOMMU 11

More optimization: Vhost Device IOTLB Cache

● Why it comes to vhost?
– Vhost-net is the most powerful and reliable in-kernel network

backend, and is widely used as a preferred backend.

● What problem does vhost encounter?
– IOTLB api of vIOMMU is implemented in qemu, while vhost works in

kernel, high frequency of iotlb translations which traverse between
kernel and userspace will impact performance dramatically.

● How does vhost survive?
– Kernel-Side device iotlb cache(ATS).

08/18/16 VHOST AND VIOMMU 12

Root Complex

Translation Agent (TA)

PCIe Device APCIe Device B

ats request

ats completion

device iotlb cache

Memory

Address Translation Services(ATS) Overview

08/18/16 VHOST AND VIOMMU 13

Why Address Translation Services(ATS)?

● Alternative
– An individual VT-d in vhost, drawbacks:

● Code duplication.
● Vendor and architecture specific.
● New api for error reporting.

● Benefits of ATS
– PCIe spec
– Platform independent.
– Easily achieved based on current iommu infrastructure.

08/18/16 VHOST AND VIOMMU 14

a
translate iova 'd'

iotlb-miss 'd'

iotlb-update 'd'

iotlb invalidate 'c'

Vhost
 (d, size, wo)

IOTLB API

lookup

new

error report

illegal address range

update 'd'

guest unmap 'c'

Vring

Qemu

Vhost Device IOTLB Cache Workflow

Tx/Rx

device iotble cache entries interval tree

(a, size, ro)

legal address range

Vhost IOTLB API

 (b, size, wo) (c, size, rw)

 (d, size, wo)

08/18/16 VHOST AND VIOMMU 15

Vhost Device IOTLB Implementation Summary

● Implementation
 - Save device iotlb cache entries in kernel.
 - Lookup entry from the cache when accessing virtio buffers.
 - Request qemu to translate for any tlb miss on demand.
 - Process update/invalidate message from qemu and manage
 the kernel cache correctly.

● Data Structure and Userspace/Kernel Interface
 - An interval tree is chosen to save the dynamica device iotlb caches.
 - A message mechanism via vhost 'fd' read/write is used to pass vATS
 request and reply.

Interrupt Remapping (IR)

08/18/16 VHOST AND VIOMMU 17

X86 system interrupts

System Bus

Bridge

Signal-based
Interrupts (MSI/MSIX)

IOAPIC

Line-based
Interrupts

PCI Bus

Processor

Local APIC

Processor

Local APIC

Processor

Local APIC

...

Kinds of interrupts:
– Line-based (edge/level)
– Signal-based (MSI/MSI-X)

IRQ chips
– IOAPIC
– Local APICs (LAPICs)

08/18/16 VHOST AND VIOMMU 18

IR challenges for vhost

● Interrupt remapping (IR) still not supported for x86 vIOMMU

– MSI and IOAPIC interrupts
● Kernel irqchip support:

– How to define interface between user and kernel space?

– How to enable vhost fast irq path (irqfd)?
● Performance impact?
● Interrupt caching

08/18/16 VHOST AND VIOMMU 19

IOAPIC interrupt delivery

● Workflow before IR:

– Fill in IOAPIC entry with interrupt information
(trigger mode, destination ID, destination mode, etc.).

– When line triggered, interrupt sent to CPU with information stored
in IOAPIC entry.

● Workflow after IR (IRTE: Interrupt Remapping Table Entry):

– Fill in IRTE with interrupt information (in system memory).

– Fill in IOAPIC entry with IRTE index.

– When line triggered, fetch IRTE index from IOAPIC entry, send the
interrupt with information stored in specific IRTE.

08/18/16 VHOST AND VIOMMU 20

MSI/MSI-X delivery

Interrrupt Request
(MSI)

Interrrupt Request
(MSI with IR)

IRTE IRTE IRTE IRTE

IRTE IRTE IRTE IRTE

IRTE IRTE IRTE IRTE

IRTE IRTE IRTE IRTE

Interrupt Remapping Table

Interrrupt Request
(MSI)

Interrrupt Remapping
Table Entry (IRTE)

LookupIndexing

Parse

Delivered

Delivered

MSI Delivery without IR

MSI Delivery with IR

08/18/16 VHOST AND VIOMMU 21

IR with kernel-irqchip

● We want interrupts “as fast as before”.
● Current implementation:

– Leverage existing GSI routing table in KVM
– Instead of translate “on the fly”, translate during setup
– Easy to implement (no KVM change required)
– Little performance impact (slow setup, fast delivery)
– Only support “split|off” kernel irqchip, not “on”

08/18/16 VHOST AND VIOMMU 22

Remap irqfd interrupts

● Fast IRQ path for vhost devices: without remapping

vhost KVM
Event Guest

Notifier
IRQ
injection

GSI Routing Table

Guest

MSI Message 1

MSI Message 2

MSI Message 3

MSI Message 4

QEMU
Setup

Setup

08/18/16 VHOST AND VIOMMU 23

Remap irqfd interrupts (cont.)

● Fast IRQ path for vhost devices: with remapping

vhost KVM
Event Guest

Notifier
IRQ
injection

GSI Routing Table

Guest

Translated
MSI Message 4

Translated
MSI Message 3

Translated
MSI Message 2

Translated
MSI Message 1QEMU

Setup

Setup

08/18/16 VHOST AND VIOMMU 24

All in all...

● To boot guest with DMAR and IR enabled:

(Possibly one extra flag to enable DMAR for guest virtio driver)

qemu-system-x86_64 -M q35,accel=kvm,kernel-irqchip=split \
 -device intel-iommu,intremap=on \
 -netdev tap,id=tap1,script=no,downscript=no,vhost=on \
 -device virtio-net-pci,netdev=tap1,disable-modern=off,ats=on

qemu-system-x86_64 -M q35,accel=kvm,kernel-irqchip=split \
 -device intel-iommu,intremap=on \
 -netdev tap,id=tap1,script=no,downscript=no,vhost=on \
 -device virtio-net-pci,netdev=tap1,disable-modern=off,ats=on

08/18/16 VHOST AND VIOMMU 25

Vhost + VIOMMU Performance

● For dynamic DMA mapping (e.g., using generic Linux kernel drivers):

– Performance dropped drastically

– TCP_STREAM: 24500 Mbps 600 Mbps→

– TCP_RR: 25000 trans/s 11600 trans/s→
● For static DMA mapping (e.g., DPDK based application like l2fwd)

– Around 5% performance drop for throughput (pktgen)

– Still more work TBD...

08/18/16 VHOST AND VIOMMU 26

Current status & TBDs

● DMAR/IR upstream status:

– QEMU: IR merged (Peter Xu), DMAR still RFC (Jason Wang will
post formal patch soon)

– Vhost & Virtio driver: merged (Michael S. Tsirkin/Jason Wang)

– DPDK: vhost-user IOTLB is being developed (Victor Kaplansky)
● TBDs

– Performance tuning for DMAR

– Quite a few enhancements for IR: explicit cache invalidations,
better error handling, etc.

08/18/16 VHOST AND VIOMMU 27

Thanks!

08/18/16 VHOST AND VIOMMU 28

Appendix

08/18/16 VHOST AND VIOMMU 29

Kernel-irqchip: a review

● Command line interface:

● Supported modes

Mode IOAPIC APIC

“ON” In kernel

“SPLIT” In userspace In kernel

In kernel In userspace

“OFF” In userspace

qemu-system-x86_64 -M q35,kernel-irqchip={on|off|split}qemu-system-x86_64 -M q35,kernel-irqchip={on|off|split}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

