
Apache Wicket: The story so far
and beyond

Andrea Del Bene, Java Senior consultant, Innoteam srl

Agenda

1) The story of Wicket so far

2) The state of Wicket and its community

3) Wicket against the client-side revolution ☺

4) A look to three distinguishing Wicket features
• Resource handling
• AJAX support
• Testing support

Who I am

Andrea Del Bene

● Senior Java consultant at
Innoteam srl

● Apache PMC member since
2013

● ASF member since 2015I’m here!

Wicket in a super-small nutshell

Java Code HTML Template

import org.apache.wicket.markup.html.WebPage;
import org.apache.wicket.markup.html.basic.Label;

public class HelloWorld extends WebPage {
 public HelloWorld() {
 add(new Label("message", "Hello World!"));
 }
}

<html>
<body>

 Message goes here

</body>
</html>

● Created in 2004 by Jonathan Locke
● Component-oriented framework a-la Swing:

● Just Java and plain HTML (and JavaScript and CSS)
● Each component (Label, Link, Button, etc…) is binded to HTML with attribute
wicket:id

Wicket rationale

When Wicket was born there were MANY alternatives to it...

Wicket was designed to:
● make components reuse possible
● minimize configuration artifacts
● make server side state management easy
● be as type safe as possible

framework wars

More than 120 frameworks

A a long time ago,
in this galaxy….

 We're still in the game!
Web frameworks usage survey by DZone,
October 2015

https://dzone.com/articles/survey-confirms-jsf-remains-leading-web-framework-2

Few have survived...one is Wicket

https://dzone.com/articles/survey-confirms-jsf-remains-leading-web-framework-2

● Current major version: 7 (supports Java 7 and Servlet API
3.0)

● Last released version: 7.5.0

● Version 8 on its way (M2) with support for Java 8

● Full support for the last web technologies and protocols
(HTML5, Web Socket, HTTP 2,…)

Since 2013 lot has been done also to revamp our community

Wicket state of health

Back in 2013 Wicket was loosing its appeal due to the lack
of two fundamental elements:

● Visibility on the web: a modern and well-structured
site, a presence on social channels (GitHub, Tweeter,
Linkedin, etc..), etc…

● A free, exhaustive and up to date documentation.

And that’s what we did to cope with this issues

Rebooting a community...

A new revamped site

Well-organized contents

An extensive user guide

Friend projects

WicketStuff project

● WicketStuf is an umbrella project that gathers many other community-
provided sub-projects offering many functionalities spanning from integration
with popular JavaScript frameworks (like TinyMCE, FoundationJS, etc…) to
advanced features such as async tasks execution or RESTFull applications.

https://github.com/wicketstuff/core

https://github.com/wicketstuff/core

Integration with Bootstrap

http://wb-mgrigorov.rhcloud.com/

http://wb-mgrigorov.rhcloud.com/

Integration with JQuery UI and
Kendo UI

http://www.7thweb.net/wicket-jquery-ui

http://www.7thweb.net/wicket-jquery-ui

Who is using Wicket?

So everything is good for Wicket…
or not?

The client side “revolution”

● In the last 3-4 years the trend is to move our application from server to
client

● REST architecture has become very popular and We have seen the rise
of client side JavaScript frameworks (Angular, React, etc...).

● The adoption of JSON as data format (both for exchange and for
persistence) has made quite cheap developing CRUD application in
JavaScript: a single language (JavaScript) for both code and data
model.

The client side “revolution”

● Single-page application (SAP) everywhere: no room for other options.

● JavaScript also on server-side (Node.js).

The hipster era has begun!

It seems server-side frameworks are now old-fashion and uncool :-(

Are we headed for extinction?

REST + JavaScript + SPA are the new kings. Shall we prepare to extinction?

The dawn of a new frameworks
war?

Who’s gonna be the next
ultimate framework?

And we have brand new
language(s)

Who’s gonna be the next
ultimate framework?

● Developing in JavaScript today requires a complex stack
of tools (NPM, Node.js, Bower, Grunt/Gulp, Babel, etc...)

● We have to compile a Script language...

● For some of these tools is really hard to cope with their
release policy:
Node.js has 4 Major active release (4, 5, 6, 7). Versioning
for LTS is unclear (4.2.0, 6.9.0,...)

● A very fragile dependencies handling. Remeber what
happened on March?

Old-school JavaScript is not
enough

Jenga-style dependencies

http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

Someone is changing is mind...

Post excerpt:

A: I would still use a Typescript + SystemJS
+ Babel combo if I were you.

B: I need to display data on a page, not
perform Sub Zero’s original MK fatality.

Maybe server side frameworks are not
ready yet to be put aside...

Original article

https://hackernoon.com/how-it-feels-to-learn-javascript-in-2016-d3a717dd577f

Want more fun?

Yah, yah, but JS is stateless and
scalable, Wicket isn’t, right?

● Let’s keep it short: if users can login into your application, then it can not be
stateless! User status must be kept somewhere and somehow.

● For many years Wicket was labeled as stateful framework. This is absolutely wrong!
It was designed to make server side state management easy, but you can choose
to be stateless as well!

The bottom line (by Captain
Obvious)

● The easiest way to build a scalable applications is to
keep it stateless ☺.

● If you can not keep the application stateless,
than keep user session as small as possible
☺☺☺.

Ok, but why choose Wicket?

There are some unique features that give
Wicket an edge on its competitors s

● Resource handling
● Testing support: applications and components

can be tested in isolation.
● AJAX support: develop AJAX-enhanced

applications (almost) without writing any
JavaScript code.

Resource handling

Resource handling

● With “resource” we indicate both static resources (such as JS and CSS
files) and dynamic resources (those who returns they value on the fly
[ex: a RSS]).

● From a technical point of view, in Wicket a resource is just an
implementation of interface org.apache.wicket.request.
resource.IResource.

● Working with dynamic resources is less frequent in Wicket and it
implies a custom implementation of IResource.

● On the contrary handling static resources is a very common task. With
Wicket we can specify not just the static resource to load, but also its
dependencies and its loading priority.

Static resources

● In general static resources are loaded from 3 possible sources:
- A generic file from local filesystem
- A file from classpath (via ClassLoader)
- An URL

● In Wicket resources are instantiated using a reference to them rather
than directly. In this way they can be lazy-loaded the first time they
are requested.

● Resource references are instances of class org.apache.wicket.
request.resource.ResourceReference.

● Most of the time static resources are JS or CSS files which can be
referred to as header items.

Header items

● As the name suggests, an header item is simply an element that is
placed inside the <head> tag of the page. In Wicket header items are
usually built from a resource reference and are instances of class
org.apache.wicket.markup.head. HeaderItem (for example
JavaScriptHeaderItem)

● A page or one of its component can add an header item overriding
its method renderHead:

class MyPanel extends Panel {

 public void renderHead(IHeaderResponse response) {
 response.render(JavaScriptHeaderItem.forUrl("https://code.jquery.com/"
 + "jquery.min.js"));
 response.render(JavaScriptHeaderItem.forScript("alert('page loaded!');"));
 }
}

https://code.jquery.com/

Static resources

● In general static resources are loaded from 3 possible sources:
- A generic file from local filesystem
- A file from classpath (via ClassLoader)
- An URL

● In Wicket resources are instantiated using a reference to them rather
than directly. In this way they can be lazy-loaded the first time they
are requested.

● Resource references are instances of class org.apache.wicket.
request.resource.ResourceReference.

● Most of the time static resources are JS or CSS files which can be
referred to as header items.

Ok, before you fall asleep, let’s
recap….

Resources

 Static Resources

Header Items

Resources: ANY kind of resources. i.e. both dynamic
(RSS, dynamic PDF, etc…) and static (JS, CSS, pictures,
etc…)

Static Resources: usually loaded from files (JS, CSS,
pictures, etc…)

Header Items: those resources that must be placed in the
header section (aka <head> tag). JS, CSS, script
sections, etc...

Built-in Header Items and
dependencies

● CssHeaderItem: for CSS content.
● JavaScriptHeaderItem: for JavaScript content.
● StringHeaderItem: render free text in the header section.

● As we said before, we can declare dependencies on header items and resources:

Url jqueyuiUrl = Url.parse("https://ajax.googleapis.com/ajax/libs/jqueryui/" +
 "1.10.2/jquery-ui.min.js");

UrlResourceReference jqueryuiRef = new UrlResourceReference(jqueyuiUrl){
 @Override
 public List<HeaderItem> getDependencies() {
 Application application = Application.get();
 ResourceReference jqueryRef = …;

 return Arrays.asList(JavaScriptHeaderItem.forReference(jqueryRef));
 }
};

JavaScriptReferenceHeaderItem javaScriptHeaderItem =
 JavaScriptHeaderItem.forReference(jqueryuiRef);

Priority Header Item

● PriorityHeaderItem: wraps another header item and ensures
that it will have the priority over the other items.

The item wrapped by PriorityHeaderItem will be contributed before any other
non-priority item, including its dependencies.

Url jqueyuiUrl = Url.parse("https://ajax.googleapis.com/ajax/libs/"
 + "jqueryui/1.10.2/jquery-ui.min.js");
UrlResourceReference jqueryuiRef = new
 UrlResourceReference(jqueyuiUrl);
JavaScriptReferenceHeaderItem javaScriptHeaderItem =
 JavaScriptHeaderItem.forReference(jqueryuiRef);

PriorityHeaderItem item = new
 PriorityHeaderItem(javaScriptHeaderItem);

https://ajax.googleapis.com/ajax/libs/

Header Items for JavaScript

● OnDomReadyHeaderItem: JavaScript code that will be executed after
the DOM has been built, but before external files will be loaded.

 OnDomReadyHeaderItem item = new OnDomReadyHeaderItem(";alert('hello!');");

● OnLoadHeaderItem: execute JavaScript code after the whole page is
loaded.

 OnLoadHeaderItem item = new OnLoadHeaderItem(";alert('hello!');");

● OnEventHeaderItem: execute JavaScript code when a specific event is
triggered.

OnEventHeaderItem item = new OnEventHeaderItem("elementId",
 "eventName", ";alert('Hello!');");

There are also header items meant to work with JavaScript events. In this
way we can execute our code only when a specific event occurs.

Bundle resources

● To reduce the number of requests to the server, resources can be
aggregated in bundles. A resource bundle can be declared during
application initialization listing all the resources that compose it:

@Override
public void init()
{

 getResourceBundles()
 .addJavaScriptBundle(getClass(), "plugins-bundle.js",
 jqueryPlugin1, jqueryPlugin2, jqueryPlugin3
);

}

Now, when one of the resources included in the bundle is requested, the entire
bundle is served, i.e. the page will contain the JavaScript entry plugins-bundle.js
, which includes all the bundle resources.

Header Items for JavaScript

● OnDomReadyHeaderItem: JavaScript code that will be executed after
the DOM has been built, but before external files will be loaded.

 OnDomReadyHeaderItem item = new OnDomReadyHeaderItem(";alert('hello!');");

● OnLoadHeaderItem: execute JavaScript code after the whole page is
loaded.

 OnLoadHeaderItem item = new OnLoadHeaderItem(";alert('hello!');");

● OnEventHeaderItem: execute JavaScript code when a specific event is
triggered.

OnEventHeaderItem item = new OnEventHeaderItem("elementId",
 "eventName", ";alert('Hello!');");

There are also header items meant to work with JavaScript events. In this
way we can execute our code only when a specific event occurs.

AJAX support

“Transparent” AJAX

Wicket simplifies AJAX development controlling via Java the following
basic operations:

● Generate a page unique id for the DOM element of a component.

● Write a callback for an event triggered on the page or on a specific
component (with AJAX behaviors).

● Refresh the HTML of a component.

● Execute JavaScript code as response to a specific event.

For the first three operations we won’t write a single
line of JavaScript!

Generate unique markup ID

To enhance our components with AJAX the first thing to do is to
provide them with a unique id attribute:

This can be done invoking method setOutputMarkupId(true). Wicket will
take car of generating a page-unique id for the component:

component.setOutputMarkupId(true);

Alternatively we can force component id to specific value with
setMarkupId():

component.setMarkupId("myId");

Handle AJAX events

● Now we can “ajaxify” components adding AJAX behaviors. In Wicket a
behaviors are quite like plug-ins that can enrich a component with
new features.

● For example org.apache.wicket.ajax.AjaxEventBehavior provides the
means to handle an event on server side via AJAX:

Java Code HTML Template

Label label = new Label("label","Hello!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget
 target) {
 //Do my stuff...
 }
});

<html>
<body>

 Message goes here

</body>
</html>

AjaxRequestTarget is the main entity for AJAX development.

Refresh component HTML and
add JavaScript to AJAX response

● A common parameter for AJAX handler is org.apache.wicket
.ajax.AjaxRequestTarget, which can be used to refresh component
HTML:

protected void onEvent(AjaxRequestTarget
 target) {
 target.add(panel);
}

protected void onEvent(AjaxRequestTarget
 target) {
 target.appendJavaScript(";alert('hello!');");
 target.getHeaderResponse().render(headerItem);
}

● AjaxRequestTarget can be used also to enrich AJAX response with
JavaScript code and header items:

Built-in AJAX components and
behaviors

A number of ready-to-use components and behaviors are provided out
of the box:

● AjaxLink

● AjaxButton

● AjaxCheckBox

● AutoCompleteTextField

● AjaxEventBehavior

● AjaxFormSubmitBehavior

● AbstractAjaxTimerBehavior
● …. More examples at http://examples7x.wicket.apache.org/ajax/

http://examples7x.wicket.apache.org/ajax/

Java lambdas: a match made in
heaven

● Java 8 lambdas are quite suited for writing callback code, which is
what we do to handle AJAX events.

● With the incoming Wicket 8 an AJAX link can be written leveraging
lambdas in the following way:

AjaxLink.onClick("link", target -> target.add(component));

● Like it? Don’t miss Martijn’s talk!

Testing with Wicket

Test in isolation

● Test Driven Development (and unit testing) has become a fundamental
activity in our everyday-job. Wicket offers a rich set of helper classes
that allows us to test our applications in isolation using just JUnit.

● With “just JUnit” we mean:

1) We don’t need to have a running server

2) We don’t need to run tests for a specific browser (like we do with
Karma)

3) No additional library required, just Wicket and JUnit (no need of
browser automation tools like Selenium)

Test in isolation

public class TestHomePage {
 private WicketTester tester;

 @Before
 public void setUp() {
 tester = new WicketTester(new WicketApplication());
 }

 @Test
 public void testHomePageLink() {
 //start and render the test page
 tester.startPage(HomePage.class);
 //assert rendered page class
 tester.assertRenderedPage(HomePage.class);
 //move to an application link
 tester.executeUrl("./foo/bar");
 //test expected page for link
 tester.assertRenderedPage(AnotherHomePage.class);
 }
}

● The central class in a Wicket testing is org.apache.wicket.util.tester.WicketTester.
This utility class provides a set of methods to render a component, click links,
check page content, etc...

Testing the response

● WicketTester allows us to access to the last response generated during
testing with method getLastResponse. Utility class Mock-
HttpServletResponse is returned to extract informations from mocked
request.

String responseContent = tester.getLastResponse().getDocument();

tester.assertContains("regExp");

● Resulting markup can be tested at tag-level with TagTester:

<html xmlns:wicket="http://wicket.apache.org">
 <head>
 <meta charset="utf-8" />
 <title></title>
 </head>
 <body>

 <div class="myClass"></div>
 </body>
</html>

String responseContent = tester.getLastResponse().getDocument();
//look for a tag with 'class="myClass"'
TagTester tagTester = TagTester.createTagByAttribute(responseTxt,
 "class", "myClass");

assertEquals("span", tagTester.getName());
List<TagTester> tagTesterList = TagTester.createTagsByAttribute(responseTxt,
 "class", "myClass", false);

assertEquals(2, tagTesterList.size());

Response content:

JUnit code:

Testing the response

● AJAX components can be tested as well “triggering” the JavaScript
event they handle:

Page Code

Label label = new Label("label", "Hello World!");
Label otherLabel = new Label("otherLabel", "hola!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget target) {
 target.add(otherLabel);
 }
});

Test Code

//simulate an AJAX "click" event
tester.executeAjaxEvent("label", "click");

//test other assertions…

Testing AJAX events

● The AJAX response can be tested with WicketTester to ensure that a specific
component has been added (i.e. we want to refresh its markup):

Page Code

Label label = new Label("label", "Hello World!");
Label otherLabel = new Label("otherLabel", "hola!");
label.setOutputMarkupId(true);

label.add(new AjaxEventBehavior("click") {
 @Override
 protected void onEvent(AjaxRequestTarget target) {
 target.add(otherLabel);
 }
});

Test Code

//simulate an AJAX "click" event
tester.executeAjaxEvent("label", "click");
//test if AjaxRequestTarget contains a component (using its path)
tester.assertComponentOnAjaxResponse("otherLabel");

Testing AJAX response

● AJAX behaviors can also be tested in isolation, relying only on
WicketTester:

Test Code

AjaxFormComponentUpdatingBehavior ajaxBehavior =
 new AjaxFormComponentUpdatingBehavior("change"){
 @Override
 protected void onUpdate(AjaxRequestTarget target) {
 //...
 }
};

component.add(ajaxBehavior);

//execute AJAX behavior, i.e. onUpdate will be invoked
tester.executeBehavior(ajaxBehavior);

Testing AJAX behaviors

WicketTester offers many more utilities for unit testing:

Other test goodies

● Check component status (assertEnabled,
assertDisabled, assetVisible, assertInvisible)

● Check component’s model value
(assertModelValue)

● Test forms with FormTester:
FormTester formTester = tester.newFormTester("form");
//set credentials
formTester.setValue("username", username);
formTester.setValue("password", password);
//submit form
formTester.submit();

● …

Summary and references

● Learn more and keep in contact with us!
– Main site: http://wicket.apache.org/
– Tweeter account: https://twitter.com/apache_wicket/
– User guide: http://wicket.apache.org/learn/#guide
– User guide live examples: http://examples-wickettutorial.rhcloud.com/

● We had a “journey” through the life of Wicket.
● We have seen how it evolved in the very last years.
● As for any other Open Source project, the health of the community is

fundamental.
● We have seen some of the most appealing features, still there is lot

more to discover!

http://wicket.apache.org/
https://twitter.com/apache_wicket/
http://wicket.apache.org/learn/#guide
http://examples-wickettutorial.rhcloud.com/

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

