
How to combine
Debian and Yocto/Bitbake?

Manuel Traut <manuel.traut@linutronix.de>

ELCE 2017 - Prague

mailto:manuel.traut@linutronix.de

What's next?
1. Why Yocto?

2. About Debian

3. Benefit of a combination

4. Existing solutions

5. Perfect combination

1) Why Yocto? ★ What is Yocto

★ Typical usage

★ Limitations

What is Yocto?
● Tooling for building your own Linux distribution and SDK

● Defines a format that eases sharing of compile recipes and patches

● Powerful configuration management for different but similar images

● Based on Open-Embedded

● Example distribution “Poky” available

Typical usage
● Use Poky example distribution

● Add meta-layers from chip and/or hardware vendor

● Add 3rd party layers, e.g. for QT5

● Add own layer with image customization and own applications

Limitations
● Recipes from different layers might be incompatible

● Packages need to be built before they can be used

● Quality of recipes is hard to verify

● Security tracking/updates need to be done

● No LTS/updates available

● Reproducibility is not completely given (host dependencies)

2) About Debian
★ The universal OS

★ Debian and embedded?

★ Usage

★ Limitations

★ E.L.B.E.

The universal OS
● Debian provides more than a pure OS, it comes with over 51 000 packages

● The infrastructure, documentation and build-tools are open-source

● Debian takes security very seriously

● Many security advisories are coordinated with other free software vendors and are

published the same day a vulnerability is made public

https://www.debian.org/distrib/packages

Debian and embedded?
Packages are available for

amd64 arm64 armel armhf i386 mips mips64el mipsel

powerpc (not in stretch) ppc64el s390x

Also cross-toolchains for different architectures are available in Debian/stretch

Usage
● Debootstrap embedded RFS (e.g. for arm) into a directory

● Use pbuilder or a cross-compiler to build own applications and copy to RFS-dir

● Remove unneeded files (man-pages, i18n, …) from RFS-dir

● Build FS (ext4, etc) or disk / UBI images using some tools and scripting

● Extract licence information and retrieve source-code of all used packages

Limitations using Debian
● Only limited number of HW architectures supported

● No HW specific binary packages like special gstreamer plugins are available

● SDCard / UBI / etc. image generation

● SDK generation and licence information and source package extraction

● Reduce image footprint

● Own application integration

E.L.B.E.

Limitations using Debian & E.L.B.E.
● Only limited number of HW architectures supported

● No HW specific binary packages like special gstreamer plugins are available

● SDCard / UBI / etc. image generation

● SDK generation and licence information and source package extraction

● Reduce image footprint

● Own application integration

3) Benefit of a
combination ★ Yocto + Debian = ?

Yocto + Debian = ?
Use from Yocto

● Task scheduling

● Configuration management

● (cross-) compile from source

if necessary

● SDK generation

Use from Debian

● Well maintained packages

● Security tracking

● Binary packages

if available and useful

● Source packages

if necessary

4) Existing solutions
★ meta-debian

★ Isar

★ nneta-elbe

★ Comparison table

meta-debian
● ~600 .bb recipes, using sources from Debian/jessie

● Build rules optimized for embedded and retrieved from 'debian/rules'

● Long-term Linux kernel from CIP (Civil Infrastructure Platform)

● Supports SDK generation

● Very active ~2000 commits on github

● Not compatible with existing Debian binary packages

Isar
● Uses Debian binary packages from stretch, jessie, wheezy or raspbian-jessie

● Optional: building Debian source packages in a chroot (with qemu-user)

● Needs 'sudo' with nopasswd for several tasks

● Default image size ~300MB

● ~100 commits on github

nneta-elbe
● Proof of concept E.L.B.E. frontend (nneta-elbe 9 / elbe ~2000 commits on github)

● Uses Debian stretch binary pkgs (tested with armhf)

● Optional: build binary pkgs from source within elbe-pbuilder

● Source and binary pkgs built with pbuilder available in a signed Debian repository

● Bitbake generates elbe-xml and schedules elbe-pbuilder and elbe-image-build jobs

● Builds licence information

● SDK generation currently not implemented, but easy because available in E.L.B.E.

nneta-debian architecture
nneta-elbe

base.bbclass

elbeproject.bbclass

source.xml.mako

image.bbclass

pbuilder.bbclass

./conf/distro/jessie.conf

./conf/distro/stretch.conf

./conf/machine/mymachine.conf

nneta-elbe-ext

libgpio_git.bb

SRC_URI = "git://github.com/linutronix/libgpio"
SRCREV = "${AUTOREV}"

S = "${WORKDIR}/git"

inherit pbuilder

hello_git.bb

simple-image.bbappend

meta-debian Isar nneta-elbe

Yocto-style config management & app integration

HW-specific SW like kernel / bootloader buildable

Use Debian sources

Default footprint / reducible? 10MB 300MB / with Yocto methods 300MB / not yet

Non-Debian archs buildable

use an arch not supported by Debian

Export used source code download dir easy to develop

Yocto-style SDK with cross-toolchain generation available easy to develop

Generate licence information csv XML & plain-text

Reproducibility pkg v. by git tags no VM / shared chroot for all builds VM/ pbuilder

Bitbake file per Debian package needed + a git repo not for bin-pkg not for bin-pkg

Use Debian binary packages

of available Debian packages limited / ~600 dsc all all

Effort needed to adapt buildsystem to new Debian release very high

Generate signed Debian repos of self built packages unsigned deb unsign. deb (dsc/sign easy to add) dsc + deb

5) Perfect
combination ★ My personal wishlist

★ Conclusion

★ Your ideas

My personal wishlist
● Collaborate with 'rebootstrap.sh'

to bootstrap Debian with settings from Bitbakes machine config

● Use Debian multiarch for cross-compiling any (modified) src pkg

for a self bootstrapped architecture

● Mix usage of cross-built Debian pkgs via Bitbake

with official Debian binary pkgs (for official supported architectures)

● Having reproducible builds for all Debian packages

Conclusion
● 3 implementations but only 2 use-cases

○ meta-debian is good for architectures that are NOT available in Debian

○ Isar and nneta-elbe can only be used if the architecture is available in Debian

○ nneta-elbe is a proof-of-concept but it's already very powerful thanks to the E.L.B.E backend

● Porting Debian bootstraping to Bitbake might be interesting for Debian and

Yocto

Your ideas
To improve the usage of Debian in embedded Linux projects?

References
nneta-elbe / E.LB.E.

http://elbe-rfs.org

http://github.com/linutronix/nneta-elbe

http://github.com/linutronix/nneta-elbe-extended

http://elinux.org/images/e/e5/Using_ELBE_to_Buil

d_Debian_Based_Embedded_Systems.pdf

Debian

https://wiki.debian.org/HelmutGrohne/rebootstrap

https://wiki.debian.org/ReproducibleBuilds

Isar

http://github.com/ilbers/Isar

https://events.linuxfoundation.org/sites/events/files/

slides/isar-elce-2016.pdf

meta-debian

http://github.com/meta-debian

https://elinux.org/images/2/2e/MiniDebianConfJap

an-Yoshi.pdf

http://elbe-rfs.org
http://github.com/linutronix/nneta-elbe
http://github.com/linutronix/nneta-elbe-extended
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
https://wiki.debian.org/HelmutGrohne/rebootstrap
http://github.com/ilbers/meta-isar
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
http://github.com/meta-debian
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf

Contact
Manuel Traut

<manuel.traut@linutronix.de>

Linutronix GmbH

https://linutronix.de

Bahnhofstraße 3

88690 Uhldingen

Germany

