LINUTRZNIX

Manuel Traut <manuel.traut@linutronix.de>
ELCE 2017 - Prague

mailto:manuel.traut@linutronix.de

Vi W N

LINUTR

Why Yocto?

About Debian

Benefit of a combination
Existing solutions
Perfect combination

NIX

LINUTRZNIX

% What is Yocto
% Typical usage
% Limitations

LINUTRZNIX

Tooling for building your own Linux distribution and SDK
Defines a format that eases sharing of compile recipes and patches
Powerful configuration management for different but similar images

Based on Open-Embedded

Example distribution “Poky” available

LINUTRZNIX

Use Poky example distribution
Add meta-layers from chip and/or hardware vendor
Add 3rd party layers, e.g. for QT5

Add own layer with image customization and own applications

LINUTRZNIX

Recipes from different layers might be incompatible
Packages need to be built before they can be used
Quality of recipes is hard to verify

Security tracking/updates need to be done

No LTS/updates available

Reproducibility is not completely given (host dependencies)

LINUTRZNIX

The universal OS
Debian and embedded?
Usage

About Debian

Limitations
E.L.B.E.

*

LINUTRZNIX

Debian provides more than a pure OS, it comes with over 51 000 packages

The infrastructure, documentation and build-tools are open-source

Debian takes security very seriously

Many security advisories are coordinated with other free software vendors and are

published the same day a vulnerability is made public

https://www.debian.org/distrib/packages

LINUTRZNIX

Packages are available for
amd64 armé64 armel armhf 386 mips mips64el mipsel

powerpc (not in stretch) ppc64el s390x

Also cross-toolchains for different architectures are available in Debian/stretch

O Debian as CIP primary reference distribution

* What does
- C‘p will

* CIP would like

LINUTRZNIX

Debootstrap embedded RFS (e.g. for arm) into a directory

Use pbuilder or a cross-compiler to build own applications and copy to RFS-dir
Remove unneeded files (man-pages, i18n, ...) from RFS-dir

Build FS (ext4, etc) or disk / UBI images using some tools and scripting

Extract licence information and retrieve source-code of all used packages

LINUTRZNIX

Only limited number of HW architectures supported

No HW specific binary packages like special gstreamer plugins are available
SDCard / UBI / etc. image generation

SDK generation and licence information and source package extraction
Reduce image footprint

Own application integration

LINUTRZNIX

SBEIL > Images
Projectdescription
Rebuild-CD

Quellcode-CD

Packages

Debian Repositories

pbuilder

LINUTRZNIX

Only limited number of HW architectures supported

No HW specific binary packages like special gstreamer plugins are available

LINUTRZNIX

Benefit of a
Comblnatlon % Yocto + Debian =?

LINUTRZNIX

Use from Yocto Use from Debian
Task scheduling Well maintained packages
Configuration management Security tracking
(cross-) compile from source Binary packages
if necessary if available and useful
SDK generation Source packages

if necessary

LINUTRZNIX

meta-debian
Isar

Existing solutions

nneta-elbe

* % % %

Comparison table

LINUTRZNIX

~600 .bb recipes, using sources from Debian/jessie

Build rules optimized for embedded and retrieved from 'debian/rules'
Long-term Linux kernel from CIP (Civil Infrastructure Platform)
Supports SDK generation

Very active ~2000 commits on github

Not compatible with existing Debian binary packages

LINUTRZNIX

Uses Debian binary packages from stretch, jessie, wheezy or raspbian-jessie
Optional: building Debian source packages in a chroot (with gemu-user)
Needs 'sudo' with nopasswd for several tasks

Default image size ~300MB

~100 commits on github

LINUTRZNIX

Proof of concept E.L.B.E. frontend (nneta-elbe 9 / elbe ~2000 commits on github)
Uses Debian stretch binary pkgs (tested with armhf)

Optional: build binary pkgs from source within elbe-pbuilder

Source and binary pkgs built with pbuilder available in a signed Debian repository
Bitbake generates elbe-xml and schedules elbe-pbuilder and elbe-image-build jobs
Builds licence information

SDK generation currently not implemented, but easy because available in E.L.B.E.

nneta-elbe

base.bbclass
elbeproject.bbclass
source.xml.mako

image.bbclass
pbuilder.bbclass

J[conf/distro/jessie.conf
Jconf/distro/stretch.conf
J/conf/machine/mymachine.conf

LINUTRZNIX

nneta-elbe-ext

libgpio_git.bb

SRC URI = "git://github.com/linutronix/libgpio"
SRCREV = "S${AUTOREV}"
S = "S{WORKDIR}/git"

inherit pbuilder

hello_git.bb

simple-image.bbappend

meta-debian

Yocto-style config management & app integration

HW-specific SW like kernel / bootloader buildable

Use Debian sources

Default footprint / reducible?

Non-Debian archs buildable

use an arch not supported by Debian

Export used source code

Yocto-style SDK with cross-toolchain generation available

Generate licence information

Reproducibility pkg v. by git tags

Bitbake file per Debian package needed

Use Debian binary packages

of available Debian packages limited / ~600 dsc

Effort needed to adapt buildsystem to new Debian release

Generate signed Debian repos of self built packages

300MB / with Yocto methods

no VM / shared chroot for all builds

not for bin-pkg

unsiagn. deb (dsc/sign easy to add)

nneta-elbe

300MB / not yet

easy to develop

easy to develop

not for bin-pkg

LINUTRZNIX

Perfect .
. . My personal wishlist
combination % Condlusion

% Your ideas

LINUTR

Collaborate with 'rebootstrap.sh'

to bootstrap Debian with settings from Bitbakes machine config

Use Debian multiarch for cross-compiling any (modified) src pkg

for a self bootstrapped architecture

Mix usage of cross-built Debian pkgs via Bitbake

with official Debian binary pkgs (for official supported architectures)

Having reproducible builds for all Debian packages

NIX

LINUTRZNIX

3 implementations but only 2 use-cases

o meta-debian is good for architectures that are NOT available in Debian
o Isar and nneta-elbe can only be used if the architecture is available in Debian
o nneta-elbe is a proof-of-concept but it's already very powerful thanks to the E.L.B.E backend

Porting Debian bootstraping to Bitbake might be interesting for Debian and

Yocto

LINUTRZNIX

To improve the usage of Debian in embedded Linux projects?

nneta-elbe /| ELB.E.

http://elbe-rfs.org

http://github.com/linutronix/nneta-elbe

http://github.com/linutronix/nneta-elbe-extended

http://elinux.org/images/e/e5/Using ELBE_to_Buil
d_Debian_Based_Embedded_Systems.pdf

Debian

https://wiki.debian.org/HelmutGrohne/rebootstrap

https://wiki.debian.org/ReproducibleBuilds

LINUTRZNIX

Isar

http://github.com/ilbers/Isar

https://events.Jinuxfoundation.org/sites/events/files/
slides/isar-elce-2016.pdf

meta-debian

http://github.com/meta-debian

https://elinux.org/images/2/2e/MiniDebianConfJap
an-Yoshi.pdf

http://elbe-rfs.org
http://github.com/linutronix/nneta-elbe
http://github.com/linutronix/nneta-elbe-extended
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
https://wiki.debian.org/HelmutGrohne/rebootstrap
http://github.com/ilbers/meta-isar
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
http://github.com/meta-debian
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf

Manuel Traut
<manuel.traut@linutronix.de>
Linutronix GmbH
https://linutronix.de

BahnhofstrafSe 3
88690 Uhldingen
Germany

LINUTRZNIX

