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Why Yocto?

About Debian

Benefit of a combination
Existing solutions
Perfect combination

NIX
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% What is Yocto
% Typical usage
% Limitations
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Tooling for building your own Linux distribution and SDK
Defines a format that eases sharing of compile recipes and patches
Powerful configuration management for different but similar images

Based on Open-Embedded

Example distribution “Poky” available
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Use Poky example distribution
Add meta-layers from chip and/or hardware vendor
Add 3rd party layers, e.g. for QT5

Add own layer with image customization and own applications
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Recipes from different layers might be incompatible
Packages need to be built before they can be used
Quality of recipes is hard to verify

Security tracking/updates need to be done

No LTS/updates available

Reproducibility is not completely given (host dependencies)



LINUTRZNIX

The universal OS
Debian and embedded?
Usage

About Debian

Limitations
E.L.B.E.

*
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Debian provides more than a pure OS, it comes with over 51 000 packages

The infrastructure, documentation and build-tools are open-source

Debian takes security very seriously

Many security advisories are coordinated with other free software vendors and are

published the same day a vulnerability is made public


https://www.debian.org/distrib/packages
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Packages are available for
amd64 armé64 armel armhf 386 mips  mips64el mipsel

powerpc (not in stretch)  ppc64el s390x

Also cross-toolchains for different architectures are available in Debian/stretch



O Debian as CIP primary reference distribution

* What does
- C‘p will

* CIP would like
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Debootstrap embedded RFS (e.g. for arm) into a directory

Use pbuilder or a cross-compiler to build own applications and copy to RFS-dir
Remove unneeded files (man-pages, i18n, ...) from RFS-dir

Build FS (ext4, etc) or disk / UBI images using some tools and scripting

Extract licence information and retrieve source-code of all used packages
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Only limited number of HW architectures supported

No HW specific binary packages like special gstreamer plugins are available
SDCard / UBI / etc. image generation

SDK generation and licence information and source package extraction
Reduce image footprint

Own application integration
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SBEIL > Images
Projectdescription
Rebuild-CD

Quellcode-CD

Packages

Debian Repositories

pbuilder
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Only limited number of HW architectures supported

No HW specific binary packages like special gstreamer plugins are available
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Benefit of a
Comblnatlon % Yocto + Debian =?
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Use from Yocto Use from Debian
Task scheduling Well maintained packages
Configuration management Security tracking
(cross-) compile from source Binary packages
if necessary if available and useful
SDK generation Source packages

if necessary
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meta-debian
Isar

Existing solutions

nneta-elbe

* % % %

Comparison table
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~600 .bb recipes, using sources from Debian/jessie

Build rules optimized for embedded and retrieved from 'debian/rules'
Long-term Linux kernel from CIP (Civil Infrastructure Platform)
Supports SDK generation

Very active ~2000 commits on github

Not compatible with existing Debian binary packages
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Uses Debian binary packages from stretch, jessie, wheezy or raspbian-jessie
Optional: building Debian source packages in a chroot (with gemu-user)
Needs 'sudo' with nopasswd for several tasks

Default image size ~300MB

~100 commits on github
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Proof of concept E.L.B.E. frontend (nneta-elbe 9 / elbe ~2000 commits on github)
Uses Debian stretch binary pkgs (tested with armhf)

Optional: build binary pkgs from source within elbe-pbuilder

Source and binary pkgs built with pbuilder available in a signed Debian repository
Bitbake generates elbe-xml and schedules elbe-pbuilder and elbe-image-build jobs
Builds licence information

SDK generation currently not implemented, but easy because available in E.L.B.E.



nneta-elbe

base.bbclass
elbeproject.bbclass
source.xml.mako

image.bbclass
pbuilder.bbclass

J[conf/distro/jessie.conf
Jconf/distro/stretch.conf
J/conf/machine/mymachine.conf
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nneta-elbe-ext

libgpio_git.bb

SRC URI = "git://github.com/linutronix/libgpio"
SRCREV = "S${AUTOREV}"
S = "S{WORKDIR}/git"

inherit pbuilder

hello_git.bb

simple-image.bbappend



meta-debian

Yocto-style config management & app integration

HW-specific SW like kernel / bootloader buildable

Use Debian sources

Default footprint / reducible?

Non-Debian archs buildable

use an arch not supported by Debian

Export used source code

Yocto-style SDK with cross-toolchain generation available

Generate licence information

Reproducibility pkg v. by git tags

Bitbake file per Debian package needed

Use Debian binary packages

# of available Debian packages limited / ~600 dsc

Effort needed to adapt buildsystem to new Debian release

Generate signed Debian repos of self built packages

300MB / with Yocto methods

no VM / shared chroot for all builds

not for bin-pkg

unsiagn. deb (dsc/sign easy to add)

nneta-elbe

300MB / not yet

easy to develop

easy to develop

not for bin-pkg
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Perfect .
. . My personal wishlist
combination % Condlusion

% Your ideas
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Collaborate with 'rebootstrap.sh'

to bootstrap Debian with settings from Bitbakes machine config

Use Debian multiarch for cross-compiling any (modified) src pkg

for a self bootstrapped architecture

Mix usage of cross-built Debian pkgs via Bitbake

with official Debian binary pkgs (for official supported architectures)

Having reproducible builds for all Debian packages

NIX
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3 implementations but only 2 use-cases

o meta-debian is good for architectures that are NOT available in Debian
o Isar and nneta-elbe can only be used if the architecture is available in Debian
o nneta-elbe is a proof-of-concept but it's already very powerful thanks to the E.L.B.E backend

Porting Debian bootstraping to Bitbake might be interesting for Debian and

Yocto
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To improve the usage of Debian in embedded Linux projects?



nneta-elbe /| ELB.E.

http://elbe-rfs.org

http://github.com/linutronix/nneta-elbe

http://github.com/linutronix/nneta-elbe-extended

http://elinux.org/images/e/e5/Using ELBE_to_Buil
d_Debian_Based_Embedded_Systems.pdf

Debian

https://wiki.debian.org/HelmutGrohne/rebootstrap

https://wiki.debian.org/ReproducibleBuilds
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Isar

http://github.com/ilbers/Isar

https://events.Jinuxfoundation.org/sites/events/files/
slides/isar-elce-2016.pdf

meta-debian

http://github.com/meta-debian

https://elinux.org/images/2/2e/MiniDebianConfJap
an-Yoshi.pdf



http://elbe-rfs.org
http://github.com/linutronix/nneta-elbe
http://github.com/linutronix/nneta-elbe-extended
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
http://elinux.org/images/e/e5/Using_ELBE_to_Build_Debian_Based_Embedded_Systems.pd
https://wiki.debian.org/HelmutGrohne/rebootstrap
http://github.com/ilbers/meta-isar
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
https://events.linuxfoundation.org/sites/events/files/slides/isar-elce-2016.pdf
http://github.com/meta-debian
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf
https://elinux.org/images/2/2e/MiniDebianConfJapan-Yoshi.pdf

Manuel Traut
<manuel.traut@linutronix.de>
Linutronix GmbH
https://linutronix.de

BahnhofstrafSe 3
88690 Uhldingen
Germany

LINUTRZNIX



