
Technology Consulting Company IGEL Co.,Ltd.�

Technology Consulting Company
Research, Development &
Global Standard�

Using Linux Media Controller
for Wayland/Weston Renderer�
Takanari Hayama
taki@igel.co.jp
http://www.igel.co.jp/

1�

•  Wayland/Weston Overview

•  Porting Weston to R-Car

•  Why Linux Media Controller Renderer?

•  Linux Media Controller Framework

•  V4L2 Renderer Design

•  Conclusions

2�

Agenda �

WAYLAND/WESTON OVERVIEW �

3�

Weston Architecture�

Wayland Client�

Weston�

Wayland Client�

Compositor Core�

Compositor
(e.g. DRM)�

Renderer (e.g. GL) �

Shell
(e.g. desktop)�

Shell Client
(e.g. desktop-shell)�

Wayland IPC�Local API Call �
Confidential� 4�

Weston w/ DRM Backend�

5�

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES �

OpenGL/ES �

compositor-drm�

gl-renderer�

shell�

libgbm/
libdrm �

compositor-
core�

pixman-
renderer�

libpximan�

GPU Kernel
Driver�

DRM/KMS
Driver�

Qt, EFL, etc.�

Weston
Components �

Wayland
Components �

Other
Components � IPC� API Call

User Space

Kernel Space

w
a

yl
a

n
d

p

ro
to

c
o

l�

6�

Rendering and Composition:
Overview (GL-Renderer) �

Wayland Client�

OpenGL/ES + wayland_egl �

GPU driver for Wayland�

Weston / DRM Compositor�

OpenGL/ES + WL Ext.� GBM �

DRM/KMS �

GPU�

GPU Driver for Wayland�

Display �

wl_egl_window Type �

wl_egl_window Type �

RENDERING �

DISPLAYING �

wl_buffer Type �

wl_buffer Type �

FRAME BUFFERS �
gbm_surface Type �

CLIENT BUFFERS �
wl_buffer Type �

FULL SCREEN�
wl_buffer Type � DRM/KMS BO Type �

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components �

Khronos w/
Wayland Ext.�

OSS
Components �

Hardware
Specific�

w
a

yl
a

n
d

p

ro
to

c
o

l�

7�

Rendering and Composition:
Window Composition�

Wayland Client�

OpenGL/ES + wayland_egl �

GPU driver for Wayland

Weston / DRM Compositor�

OpenGL/ES + WL Ext.� GBM �

DRM/KMS �

GPU�

GPU driver for Wayland

Display �

wl_egl_window Type �

wl_egl_window Type �

RENDERING �

DISPLAYING �

wl_buffer Type �

wl_buffer Type �

FRAME BUFFERS �
gbm_surface Type �

CLIENT BUFFERS �
wl_buffer Type �

FULL SCREEN�
wl_buffer Type � DRM/KMS BO Type �

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components �

Khronos w/
Wayland Ext.�

OSS
Components �

Hardware
Specific�

1. Render w/
OpenGL/ES �

2.Commit buffers w/
eglSwapBuffers()

3. Import w/ eglCreateImageKHR() �

6. Set composed
buffers as KMS
BOs.�

5. Compose w/
OpenGL/ES �

4. Register
destination frame
buffers allocated
with GBM.�

w
a

yl
a

n
d

p

ro
to

c
o

l�

8�

Rendering and Composition:
Full Screen or Sprite Rendering�

Wayland Client�

OpenGL/ES + wayland_egl �

GPU driver for Wayland

Weston / DRM Compositor�

OpenGL/ES + WL Ext.� GBM �

DRM/KMS �

GPU�

GPU driver for Wayland

Display �

wl_egl_window Type �

wl_egl_window Type �

RENDERING �

DISPLAYING �

wl_buffer Type �

wl_buffer Type �

FRAME BUFFERS �
gbm_surface Type �

CLIENT BUFFERS �
wl_buffer Type �

FULL SCREEN�
wl_buffer Type � DRM/KMS BO Type �

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components �

Khronos w/
Wayland Ext.�

OSS
Components �

Hardware
Specific�

1. Render w/
OpenGL/ES �

2.Commit buffers w/
eglSwapBuffers()

3. Import w/ gbm_bo_import() �

4. Set composed
buffers as KMS
BOs.�

PORTING WESTON TO R-CAR �

9�

1.  OpenGL/ES for Wayland/Weston

2.  Zero Copy Mechanism for Native Buffer

“Typically, hardware enabling includes
modesetting/display and EGL/GLES2. On
top of that, Wayland needs a way to share
buffers efficiently between processes.”
http://wayland.freedesktop.org/architecture.html�

10�

What Are Required?�

•  Must support the following Native Display Types for
eglGetDisplay():
–  wl_display for clients
–  gbm handle for Weston

•  Must support the following EGL_EXTENSIONs:
–  EGL_KHR_image_pixmap
–  EGL_WL_bind_wayland_display

•  Must support the following Native Pixmap Type for
eglCreateImageKHR():
–  EGL_WAYLAND_BUFFER_WL

•  Must support the following Wayland extension APIs:
–  eglBindWaylandDisplayWL
–  eglUnbindWaylandDisplayWL
–  eglQueryWaylandBufferWL �

11�

Wayland Requirements for
OpenGL/ES �

WSEGL for Wayland�

Weston for Renesas R-Car�

12�

Wayland Client�

Renesas OpenGL/ES �

libgbm w/ KMS
Backend�

wayland-kms �

Wayland/Weston
Components �

New OSS
Components �

Standard OSS
Components � IPC� API Call

Wayland Client Support� Wayland Server Support�

Weston (Wayland Server)�

Wayland
Server Stub �

EGL with Wayland Extension�

Wayland Client
Stub �

libdrm &
libkms �

Proprietary �

wayland-egl �

1.  A client creates a wl_surface on the
server.

2.  The client attach a wl_buffer to the
created surface.

3.  The client submit the wl_buffer to the
server.

4.  The server takes the wl_buffer and
compose to the screen.

All of above should happen in zero-copy
manner!�

13�

Wayland Composition Revisited�

•  An abstract data type that represents a
reference to a pixel buffer.

•  2 open source implementations:
–  wl_shm : wayland standard

•  Based on Linux shared memory. Not physically contiguous.

–  wl_drm : Mesa standard
•  Based on DRI. Possibly physically contiguous.

•  Weston understands wl_shm only. Wl_drm is Mesa
specific. Thus, wl_drm is not handled by Weston,
but by Mesa internally.

14�

What is wl_buffer by the way? �

•  Requirements
– End-to-end Buffer Zero Copy
– Physically Contiguous Memory

•  wl_drm?
–  Implementation is too Mesa dependent.

•  Need more generic implementation.

15�

Which wl_buffer implementation
to use?�

•  KMS BO buffer type.
– https://github.com/thayama/wayland-kms
– Based on wl_drm in Mesa.

•  Imports DMABUF via PRIME, a dma-buf

interface layer in DRM.
– Originally, we used DRM Handle, but we now

use DMABUF instead.

•  Can directly pass video output from V4L2.

16�

wl_kms �

17�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

18�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

Buffer Allocation. Client
creates rendering surface
with EGL API. WSEGL
allocates memory with
KMS BO, and make
avaialable to GPU. �

19�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�Rendering to the

allocated buffer.
GPU gets all
details needed
about the buffer
via WSEGL. �

20�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

When a client calls
eglSwapBuffers(), WSEGL
commits a buffer to the
server via Wayland. The
details of the buffer is
DMABUF fd, a stride, a
size, and a pixelf ormat.�

21�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

When the server receives
the buffer, it imports with
eglCreateImageKHR().�

22�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

WSEGL gets details of
the buffer from wayland-
kms, and asks to import
the given DMABUF. The
buffer is then made
available to GPU.�

23�

Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES � gl-renderer�compositor-

drm�

KMS BO �

User Space�

Kernel Space�

Wayland
GPU Driver�

KMS Driver�

OpenGL/ES �Wayland
GPU Driver�

Gl-renderer can now
refer the buffer passed
by the client, and
composes a final output.�

WHY LINUX MEDIA
CONTROLLER RENDERER? �

24�

•  Applications are heading towards more and
more GPU intensive.

•  People want to use GPU for more advanced
UI, rather than a simple window composition.
–  On the other hand, some people want to do

more complex composition using GPU. J

•  GPU Offloading is one way.
–  https://archive.fosdem.org/2014/schedule/

event/wayland_gpu/
–  But, still premature for real products.

25�

Motivation �

•  Not many embedded SoC has
multiple GPUs.

•  However, they often have
sophisticated hardware for video
signal processing that allow to do 2D
blending.

•  Why not use them?�

26�

Simpler Approach?�

LINUX MEDIA CONTROLLER
FRAMEWORK �

27�

•  Just a Video4Linux2 device.

•  Make V4L2 media device parameters
and pipelines configurable from user
space.
– http://linuxtv.org/downloads/presentations/

summit_jun_2010/20100206-fosdem.pdf

•  Important keywords: Entities, Pads, and
Links.�

28�

What is Media Controller?�

29�

Media Controller�

Entity�

Entity�

1

0

0

1

Entity�
0

2

1

Link �

Entity�

Source
Pad �

Sink Pad�

May have
multiple sink

pads �

•  A standard Linux API to configure
complicated media devices from user
space.

•  On Renesas R-Car, VSP1, a device for
video signal processing, is exposed via
Media Controller API in Linux.

•  Zero-copy could be easily achieved via
DMABUF. Ideal for our use case.
– Can use wl_kms!�

30�

Why Media Controller?�

•  Supported Features
– Scaling
– Cropping
– Pixel Format Conversion
– 4 to 1 Blending

•  As pipelines in VSP1 are configurable,
best suits to Media Controller
Framework!

31�

Renesas R-Car VSP1 �

V4L2 RENDERER FOR WESTON�

32�

V4L2 Renderer Support in Weston�

33�

Wayland Client�

Wayland
Client Stub �

Weston (Wayland Server)�

Wayland
Server Stub �OpenGL/ES �

v4l2-renderer device
for VSPD �

compositor-drm�

v4l2-renderer�

shell�

libgbm/
libdrm �

compositor-
core�

GPU Kernel
Driver�

DRM/KMS
Driver�

Qt, EFL, etc.�

Weston
Components �

Wayland
Components �

Other
Components � IPC� API Call

User Space

Kernel Space
VSP V4L2

Driver�

New
Components �

New components
added to Weston.
Plus Minimum
changes to the
existing compositor-
drm to host a v4l2-
renderer.�

•  Kept as minimum as possible.

•  Changes are to load v4l2-renderer, and
pass output buffers to v4l2-renderer.
Almost same as those of for pixman-
renderer.

•  Minor changes on output buffer
allocations; DMABUF export and a read
permission to mmap’d output buffer are
added.�

34�

Changes to compositor-drm�

•  Media device agnostic layer.

•  Does everything needed to import wl_kms
and wl_shm buffer to V4L2 Media Controller
arena, i.e. DMABUF.

•  Calculations required to figure out source
regions and destination regions are done in
v4l2-renderer.

•  Anything that are not media device specific is
handled in v4l2-renderer.�

35�

v4l2-renderer�

•  Media device specific layer.

•  Does everything specific to the media devices.
–  Media Controller Framework requires the background

knowledge of the underlying media devices.

•  Does actual job to compose surfaces specified as
DMABUF from v4l2-renderer.

36�

V4L2 renderer device�

API � Descriptions�
init� Initialize a v4l2 media controller device.�
create_output� Create an output. No buffer passed yet.�
set_output_buffer� Set an output buffer for the output.�
create_surface� Create a surface. No buffer passed yet.�
attach_buffer� Set a buffer for the surface.�
begin_compose� Begin a new composition.�
finish_compose� Finish the composition.�
draw_view� Compose the surface.�
get_capabilities � Get capabilities of the V4L2 Renderer Device.�

37�

V4L2 Renderer Device API�

•  V4L2 Renderer is not official yet.
– https://github.com/thayama/weston

38�

Current Status �

CONCLUSIONS �

39�

•  Yes and No.

•  Configuring parameters and links are not
free. Not really great if we need to
configure media device very often.
– DRI could be alternative.

•  On the other hand, use of the Linux
standard features including DMABUF is
great for extensibility and flexibility.�

40�

Was Media Controller the Right
Choice?�

•  Yes and No.

•  Other renderers help you implementing new
renderer.

•  Geometry was the most complex part of Weston.
–  Global coordinate, Output local coordinate, and

view coordinate.

•  Renderers are responsible for understanding these
coordinates and rendering views to the correct
location.
–  Pixman-renderer can give you some idea; how

complicated it is.�

41�

Was implementing new renderer
easy? �

42�

Coordinate System in Weston�

Output 0� Output 1�

opaque
region�

View position is in
Global
Coordinate.�

Rendering needs
to take care of
output local
coordinate.�

Opaque region is
specified in View
Coordinate.�

APPENDIX �

43�

Components used in Renesas
OpenGL/ES for Wayland�

Components � Descriptions�
EGL with Wayland
Extension�

A thin layer to support Wayland specific EGL
APIs and a native buffer type for
eglCreateImageKHR().
https://github.com/thayama/libegl

wayland-kms � A subclass of wl_buffer for to pass KMS BO.
Defines a wl_kms wayland protocol, and
server side codes.
https://github.com/thayama/wayland-kms

libgbm w/ KMS Backend� GBM frontend extracted from Mesa and
used in Weston with a KMS Backend support.
https://github.com/thayama/libgbm

WSEGL for Wayland� A bridge component between GPU and
Wayland.

44�

