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Weston w/ DRM Backend�
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Rendering and Composition: 
Overview (GL-Renderer) �
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Rendering and Composition: 
Window Composition�

Wayland Client�

OpenGL/ES + wayland_egl �

GPU driver for Wayland 

Weston / DRM Compositor�

OpenGL/ES + WL Ext.� GBM �

DRM/KMS �

GPU�

GPU driver for Wayland 

Display �

wl_egl_window Type �

wl_egl_window Type �

RENDERING �
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FRAME BUFFERS �
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FULL SCREEN�
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SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston 
Components �

Khronos w/ 
Wayland Ext.�

OSS 
Components �

Hardware 
Specific�

1. Render w/
OpenGL/ES �

2.Commit buffers w/ 
eglSwapBuffers() 

3. Import w/ eglCreateImageKHR() �

6. Set composed 
buffers as KMS 
BOs.�

5. Compose w/ 
OpenGL/ES �

4. Register 
destination frame 
buffers allocated 
with GBM.�
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Rendering and Composition: 
Full Screen or Sprite Rendering�
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Specific�

1. Render w/
OpenGL/ES �

2.Commit buffers w/ 
eglSwapBuffers() 

3. Import w/ gbm_bo_import() �

4. Set composed 
buffers as KMS 
BOs.�



PORTING WESTON TO R-CAR �
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1.  OpenGL/ES for Wayland/Weston 

2.  Zero Copy Mechanism for Native Buffer 

“Typically, hardware enabling includes 
modesetting/display and EGL/GLES2. On 
top of that, Wayland needs a way to share 
buffers efficiently between processes.”
http://wayland.freedesktop.org/architecture.html�
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What Are Required?�



•  Must support the following Native Display Types for 
eglGetDisplay(): 
–  wl_display for clients 
–  gbm handle for Weston 

•  Must support the following EGL_EXTENSIONs: 
–  EGL_KHR_image_pixmap 
–  EGL_WL_bind_wayland_display 

•  Must support the following Native Pixmap Type for 
eglCreateImageKHR(): 
–  EGL_WAYLAND_BUFFER_WL 

•  Must support the following Wayland extension APIs: 
–  eglBindWaylandDisplayWL 
–  eglUnbindWaylandDisplayWL 
–  eglQueryWaylandBufferWL �
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Wayland Requirements for 
OpenGL/ES �



WSEGL for Wayland�

Weston for Renesas R-Car�
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Wayland Client�

Renesas OpenGL/ES �

libgbm w/ KMS 
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Wayland/Weston 
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1.  A client creates a wl_surface on the 
server. 

2.  The client attach a wl_buffer to the 
created surface. 

3.  The client submit the wl_buffer to the 
server. 

4.  The server takes the wl_buffer and 
compose to the screen. 

 
All of above should happen in zero-copy 
manner!�
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Wayland Composition Revisited�



•  An abstract data type that represents a 
reference to a pixel buffer. 

•  2 open source implementations: 
–  wl_shm : wayland standard 

•  Based on Linux shared memory. Not physically contiguous. 

–  wl_drm : Mesa standard 
•  Based on DRI. Possibly physically contiguous. 

•  Weston understands wl_shm only. Wl_drm is Mesa 
specific. Thus, wl_drm is not handled by Weston, 
but by Mesa internally. 
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What is wl_buffer by the way? �



•  Requirements 
– End-to-end Buffer Zero Copy 
– Physically Contiguous Memory 

•  wl_drm? 
–  Implementation is too Mesa dependent. 

•  Need more generic implementation. 
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Which wl_buffer implementation 
to use?�



•  KMS BO buffer type. 
– https://github.com/thayama/wayland-kms 
– Based on wl_drm in Mesa. 

 
•  Imports DMABUF via PRIME, a dma-buf 

interface layer in DRM. 
– Originally, we used DRM Handle, but we now 

use DMABUF instead. 

•  Can directly pass video output from V4L2. 
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wl_kms �
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Buffer Zero Copying with wl_kms �

Wayland Client�
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Buffer Zero Copying with wl_kms �

Wayland Client�

Wayland 
Client Stub �
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Buffer Allocation. Client 
creates rendering surface 
with EGL API. WSEGL 
allocates memory with 
KMS BO, and make 
avaialable to GPU. �



19�

Buffer Zero Copying with wl_kms �
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Buffer Zero Copying with wl_kms �
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When a client calls 
eglSwapBuffers(), WSEGL 
commits a buffer to the 
server via Wayland. The 
details of the buffer is 
DMABUF fd, a stride, a 
size, and a pixelf ormat.�
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Buffer Zero Copying with wl_kms �
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When the server receives 
the buffer, it imports with 
eglCreateImageKHR().�
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Buffer Zero Copying with wl_kms �

Wayland Client�
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WSEGL gets details of 
the buffer from wayland-
kms, and asks to import 
the given DMABUF. The 
buffer is then made 
available to GPU.�
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Buffer Zero Copying with wl_kms �

Wayland Client�
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Gl-renderer can now 
refer the buffer passed 
by the client, and 
composes a final output.�



WHY LINUX MEDIA 
CONTROLLER RENDERER? �
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•  Applications are heading towards more and 
more GPU intensive. 

•  People want to use GPU for more advanced 
UI, rather than a simple window composition. 
–  On the other hand, some people want to do 

more complex composition using GPU. J 

•  GPU Offloading is one way. 
–  https://archive.fosdem.org/2014/schedule/

event/wayland_gpu/ 
–  But, still premature for real products. 
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Motivation �



•  Not many embedded SoC has 
multiple GPUs. 

•  However, they often have 
sophisticated hardware for video 
signal processing that allow to do 2D 
blending. 

•  Why not use them?�

26�

Simpler Approach?�



LINUX MEDIA CONTROLLER 
FRAMEWORK �
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•  Just a Video4Linux2 device. 

•  Make V4L2 media device parameters 
and pipelines configurable from user 
space. 
– http://linuxtv.org/downloads/presentations/

summit_jun_2010/20100206-fosdem.pdf 

•  Important keywords: Entities, Pads, and 
Links.�
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What is Media Controller?�
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•  A standard Linux API to configure 
complicated media devices from user 
space. 

•  On Renesas R-Car, VSP1, a device for 
video signal processing, is exposed via 
Media Controller API in Linux. 

•  Zero-copy could be easily achieved via 
DMABUF. Ideal for our use case. 
– Can use wl_kms!�
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Why Media Controller?�



•  Supported Features 
– Scaling 
– Cropping 
– Pixel Format Conversion 
– 4 to 1 Blending 

•  As pipelines in VSP1 are configurable, 
best suits to Media Controller 
Framework!  
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Renesas R-Car VSP1 �



V4L2 RENDERER FOR WESTON�
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V4L2 Renderer Support in Weston�
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•  Kept as minimum as possible. 

•  Changes are to load v4l2-renderer, and 
pass output buffers to v4l2-renderer. 
Almost same as those of for pixman-
renderer. 

•  Minor changes on output buffer 
allocations; DMABUF export and a read 
permission to mmap’d output buffer are 
added.�
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Changes to compositor-drm�



•  Media device agnostic layer. 

•  Does everything needed to import wl_kms 
and wl_shm buffer to V4L2 Media Controller 
arena, i.e. DMABUF. 

•  Calculations required to figure out source 
regions and destination regions are done in 
v4l2-renderer. 

•  Anything that are not media device specific is 
handled in v4l2-renderer.�
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v4l2-renderer�



•  Media device specific layer. 

•  Does everything specific to the media devices. 
–  Media Controller Framework requires the background 

knowledge of the underlying media devices. 

•  Does actual job to compose surfaces specified as 
DMABUF from v4l2-renderer. 
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V4L2 renderer device�



API � Descriptions�
init� Initialize a v4l2 media controller device.�
create_output� Create an output. No buffer passed yet.�
set_output_buffer� Set an output buffer for the output.�
create_surface� Create a surface. No buffer passed yet.�
attach_buffer� Set a buffer for the surface.�
begin_compose� Begin a new composition.�
finish_compose� Finish the composition.�
draw_view� Compose the surface.�
get_capabilities � Get capabilities of the V4L2 Renderer Device.�
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V4L2 Renderer Device API�



•  V4L2 Renderer is not official yet. 
– https://github.com/thayama/weston 
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Current Status �



CONCLUSIONS �
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•  Yes and No. 

•  Configuring parameters and links are not 
free. Not really great if we need to 
configure media device very often. 
– DRI could be alternative. 

•  On the other hand, use of the Linux 
standard features including DMABUF is 
great for extensibility and flexibility.�
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Was Media Controller the Right 
Choice?�



•  Yes and No. 

•  Other renderers help you implementing new 
renderer. 

•  Geometry was the most complex part of Weston. 
–  Global coordinate, Output local coordinate, and 

view coordinate. 

•  Renderers are responsible for understanding these 
coordinates and rendering views to the correct 
location. 
–  Pixman-renderer can give you some idea; how 

complicated it is.�
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Was implementing new renderer 
easy? �
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Coordinate System in Weston�

Output 0� Output 1�

opaque 
region�

View position is in 
Global 
Coordinate.�

Rendering needs 
to take care of 
output local 
coordinate.�

Opaque region is 
specified in  View 
Coordinate.�
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Components used in Renesas 
OpenGL/ES for Wayland�

Components � Descriptions�
EGL with Wayland 
Extension�

A thin layer to support Wayland specific EGL 
APIs and a native buffer type for 
eglCreateImageKHR(). 
https://github.com/thayama/libegl 

wayland-kms � A subclass of wl_buffer for to pass KMS BO. 
Defines a wl_kms wayland protocol, and 
server side codes. 
https://github.com/thayama/wayland-kms 

libgbm w/ KMS Backend� GBM frontend extracted from Mesa and 
used in Weston with a KMS Backend support. 
https://github.com/thayama/libgbm 

WSEGL for Wayland� A bridge component between GPU and 
Wayland. 
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