Using Linux Media Controller
for Wayland/Weston Renderer

Takanari Hayama
taki@igel.co.jp
http://www.igel.co.jp/

Technology Consulting Company IGEL Co.,Ltd.

Agenda

Wayland/Weston Overview

Porting Weston to R-Car

Why Linux Media Controller Renderere
Linux Media Controller Framework
V4L2 Renderer Design

Conclusions

WAYLAND/WESTON OVERVIEW

Weston Architecture

. , Shell Client
Wayland Client | | Wayland Client (e.g. desktop-shell)
A A
Weston
v
Compositor Core
Compositor Shell
(€.g. DRM) (e.g. desktop)

Renderer (e.g. GL)

Local API Call <—> Wayland IPC

Weston w/ DRM Backend

4 N\
Wayland Client } [Weston (Wayland Server)
L J
A A A A
f) ‘ w I| d w I| d ot i)
aylan aylan compositor-
. OpenGL/ES }[Qt, EFL, efc. } Client Stub ™ Server Stub [core } [shel .
A
P A 4
compositor-drm }
- A A 4
P A 4 N : A 4 N
pixman-
gl-renderer U
o yy J 3
P A 4 N A 4 Ib Vtr) /
L ibgbm
OpenGL/ES libpximan [ibdrm }
User Space E x A / Y

A 4

Kernel $pace
P [GPU Kemel DRM/KMS
L Driver Driver

Weston Wayland Other
Components Components Components

<> |[PC <> APICall

Rendering and Composition:
Overview (GL-Renderer)

Wayland Client

wl_buffer Type

> Weston / DRM Compositor
wl_egl_window Type CLIENT BUFFERS| FRAME BUFFER} FULL SCREEN SCANOUT BUFFERS
wl_buffer Type gbm_surface|Type wl_buffer Type DRM/KMS BO Type

<

970
\ 53 v v \ 4
> -—
o9
OpenGL/ES + wayland_egl 2 Q OpenGL/ES + WL Ext. GBM
) r— 1
wl_egl_window Type e
\ N\ v \ 4 \
wl_buffer Tyge
GPU driver for Wayland GPU Driver for Wayland DRM/KMS
DISPLAYING
RENDERING
Software
Hardware N\ N\ \ \
GPU Display
Wayland/Weston Khronos w/ OSS Hardware
Components Wayland Ext. Components Specific

Rendering and Composition:
Window Composition

Wayland Client

3. Import w/ eglCreateimageKHR()

T

Weston / DRM Compositor

Legl window T Q.I CLIENT BUFFERS} FRAME BUFFERS J FULL SCREEN SCANOUT BUFFERS
1. Render w/ wl_buffer Type gbmfsurface| Ty wl buffer Tvpe DRM/KMS BO Type
OpenGL/ES 5. Compose w/
OpenGL/ES 6. Set composed
\ 2.Commit buffers w/ v v = buffers as KMS
eglSwapBuffers() BO:s.
OpenGL/Eg + waylold_egl s Q OpenGL/ES § WL Ext. GBM
wl_egl_window Typ4 |
4. Regqister
destination frame
\ buffers allocated v v Y
wl_buffer Tyge H
GPU drivér for Wayland with GBM. land DRM/KMS
DISPLAYING |
RENDERING
Software
Hardware \ \ V \'4 V \ V
GPU Display
Wayland/Weston Khronos w/ OSS Hardware
Components Wayland Ext. Components Specific

Rendering and Composition:

Full Screen or Sprite Rendering

Wayland Client

Leal window T q]

1. Render w/

3. Import w/ gbm_bo_import()

CLIENT BUFFERS
wl_buffer Type

FRAME BUFFER

gbm_surface|Type

FULL SCREEN
wl_buffer Type

SCANOUT BUFFERS
DRM/KMS BO Type

OpenGL/ES
P 4. Set composed
\ 2.Commit buffers w/ v iV buffers as KMS
eglSwapBuffers() BO:s.
OpenGL/Eg + wqylold_egl = Q OpenGL/ES + WL Ext. GBM
wl_egl_window Typ4 |
\ v \'4 Y
wl_buffer Tyge
GPU drivér for Wayland GPU driver for Wayland DRM/KMS
DISPLAYING
RENDERING
Software
Hardware \ \ \ v
GPU Display
Wayland/Weston Khronos w/ OSS Hardware
Components Wayland Ext. Components Specific

PORTING WESTON TO R-CAR

What Are Requirede

1. OpenGL/ES for Wayland/Weston
2. Lero Copy Mechanism for Native Buffer

“Typically, hardware enabling includes
modesetting/display and EGL/GLES2. On
top of that, Wayland needs a way fo share

buffers efficiently between processes.”
http://wayland.freedesktop.org/architecture.html

Wayland Requirements for
OpenGL/ES

Must support the following Native Display Types for
eglGetDisplay():

— wl display for clients

— gbm handle for Weston

Must support the following EGL_EXTENSIONS:
— EGL KHR image pixmap
— EGL WL bind wayland display

Must support the following Native Pixmap Type for
eglCreatelmageKHR():

— EGL WAYLAND BUFFER WL

Must support the following Wayland extension APIs:
— eglBindWaylandDisplayWL

— eglUnbindWaylandDisplayWL

— eglQueryWaylandBufferWL

Weston for Renesas R-Car

Wayland Client

J |

A
\ 4

L

wayland-egl]

Weston (Wayland Server)

!
EGL with Wayland Extension
y \ ¢
Renesas OpenGL/ES
v
/ A A
WSEGL for Wayland v v
[Wayland Client Support] [Wayland Server Support
-
\ 4 \ 4

wayland-kms

v

v

A

A 4

A 4

Wayland Wayland Client
Server Stub Stub

)l

libdrm &
libkms

|

[

Components

Components

Wayland/Weston] [Standard OSS

New OSS
Components

4

A

liogbbm w/ KMS
Backend

[Proprietary] <+» |PC <> APICadal

\ 4

12

Wayland Composition Revisited

1. A client creates a wl surface on the
server.

The client attach a wl buffer to the
created surface.

. The client submit the wi _buffer 1o the
server.

The server takes the wl_buffer and
compose to the screen.

AW N

All of above should happen in zero-copy
manner!

What is wl_buftfer by the way<

« An abstract data type that represents a
reference to a pixel buffer.

« 2 open source implementations:

— wl_shm : wayland standard
* Based on Linux shared memory. Not physically contiguous.

— wl_drm : Mesa standard
» Based on DRI. Possibly physically contiguous.

« Weston understands wi_shm only. WI_drm is Mesa
specific. Thus, wl_drm is not handled by Weston,
but by Mesa internally.

Which wi_buftfer implementation
to usee

« Requirements
— End-to-end Buffer Zero Copy
— Physically Contiguous Memory

« wl_drm?¢
— Implementation is too Mesa dependent.

 Need more generic implementation.

wil kms

« KMS BO buffer type.

— https://aithub.com/thayama/wayland-kms
— Based on wl_drm in Mesa.

« Imports DMABUF via PRIME, a dma-buf
iIntferface layer in DRM.

— Originally, we used DRM Handle, but we now
use DMABUF instead.

« Can directly pass video output from V4L2.

Buffer Zero Copying with wl_kms

e N
Wayland Client } [Weston (Wayland Server)
L J
A A A
- \ 4 I I A 4 A 4 N
Wayland Wayland compositor-
§ OpenCL/ES } Client Stub " Server Stub [drm }[Chlcpess "
¢ W 1 ¢ !
Wayland Wayland
[GPU Driver J [GPU Driver OpenGL/ES }
/Y A
User Space
v
Kernel Space
KMS Driver

> KMS BO +

17

Buffer Zero Copying with wl_kms

Wayland Client } [Weston (Wayland Server)
\ /
f Wayland Wayland compositor-)
§ SleEineNE } r ClientStub " Server Stub [drm }[SRS "
v t v !
Wayland Buffer Allocation. Client Wayland
[GPU Driver creates rendering surface GPU Driver OpenGL/ES
with EGL API. WSEGL & o
allocates memory with
KMS BO, and make User Space
o avaialable to GPU.
Kernel Space

[KMS Driver

> KMS BO +

18

Buffer Zero Copying with wl_kms

e A
Wayland Client } [Weston (Wayland Server)
. /
- \ 4 I I \ 4 A 4 N
Wayland Wayland compositor-
§ OpenGL/ES } Client Stub " Server Stub [drm }[Chlcpess "
Wayland W - s yland OpenGL/ES
GPU Driver J Rendering to the |J priver P
allocated buffer. & /Y
GPU gets all
details needed User Space
! about the buffer
via WSEGL. Kernel Space
[KMS Driver
> KMS BO

19

Buffer Zero Copying with wl_kms

4 N\
Wayland Client J [Weston (Wayland Server)

A I I A 4
\ 4 \ 4 \ 4

f Wayland Wayland compositor- |
L OpenCL/ES J Client Stub - Server Stub [drm } [gkrenderer .
Wayland W Wayland
[GPU Driver J [GPU Driver H OpenGL/ES J
A 7\
When a client calls
eglSwapBuffers(), WSEGL User Space
v commits a buffer to the ¢ s
: server via Wayland. The ernelspace
KMS Driver . .
details of the buffer is
DMABUF fd, a stride, a
size, and a pixelf ormat.
> KMS BO

20

Buffer Zero Copying with wl_kms

Wayland Client

J |

Weston (Wayland Server)

A

\ 4

I

I A
\ 4

4

A 4

Wayland Wayland compositor-
§ OpenGL/ES } Client Stub Server Stub [drm [Chlcpess "
Wayland f Wayland
[GPU Driver J ~ GPU Driver NGL/ES }
I /1
When the server receives User S
the buffer, it imports with >Cr SPace
Y eglCreatelmageKHR(). Kernel Space
[KMS Driver :
> KMS BO

21

Buffer Zero Copying with wl_kms

Wayland Client } [Weston (Wayland Server)
L J
- \ 4 I I A 4 A 4 -
Wayland Wayland compositor-
§ OpenCL/ES } Client Stub " Server Stub [drm }[Chlcpess "
Wayland W Wayland
[GPU Driver J [GPU Driver OpenGL/ES }

A

User Space

v
\\ Kernel Space
[KMS Driver

WSEGL gets details of
the buffer from wayland-
kms, and asks to import
the given DMABUE. The
> KMS BO buffer is then made
available to GPU.

22

Buffer Zero Copying with wl_kms

Wayland Client

} [Weston (Wayland Server)

A

\ 4

I I

A

\ 4

4

Wayland Wayland compositor-
§ OpenCL/ES } Client Stub " Server Stub [drm } [Chlcpess "
Wayland Wayland
[GPU Driver J [GPU Driver OpenGL/ES }
Gl-renderer can now User Space
v refer the buffer passed
S D by the client, and Kernel Space
e composes a final output.
> KMS BO

23

WHY LINUX MEDIA
CONTROLLER RENDERER?

Motivation

« Applications are heading towards more and
more GPU intensive.

» People want to use GPU for more advanced
Ul, rather than a simple window composition.

— On the other hand, some people want to do
more complex composition using GPU. ©

« GPU Offloading is one way.

— https://archive.fosdem.org/2014/schedule/
event/wavland gpu/

— But, still premature for real products.

Simpler Approach?

 Not many embedded SoC has
multiple GPUEs.

 However, they often have
sophisticated hardware for video
signal processing that allow to do 2D
blending.

« Why not use them?@

LINUX MEDIA CONTROLLER
FRAMEWORK

What is Media Controllere

e Just a Video4dlLinux2 device.

 Make V4L2 media device parameters
and pipelines configurable from user
space.

— http://linuxtv.org/downloads/presentations/
summit_jun_2010/20100206-fosdem.pdf

« Important keywords: Enfities, Pads, and
Links.

Media Controller

Sink Pad :
Link
_ Source
0 Entity Pad
— O
Entity 2
S —— '|
o) Enfity
May have Entity

multiple sink
pads

29

Why Media Conftroller?

» A standard Linux APl fo configure
complicated media devices from user
space.

» On Renesas R-Car, VSP1, a device for
video signal processing, is exposed via
Media Controller APl in Linux.

« /ero-copy could be easily achieved vio
DMABUF. [deal for our use case.

— Can use wl_kms!

Renesas R-Car VSP1

« Supported Features
—Scaling
— Cropping
— Pixel Format Conversion
— 4 to 1 Blending

* As pipelines in VSP1 are configurable,
best suits to Media Controller
Fraomework!

V4L2 RENDERER FOR WESTON

V4L2 Renderer Support in Weston

.

Wayland Client

J [Weston (Wayland Server)

A

A I
\ 4

y

I

A

\ 4

Wayland Wayland compositor-
. Qt. EFL. efc. J[OpenGL/ES J Client Stub Server Stub [core } [= .
A A
A 4
p
N cembenen: 1
Plus Minimum ; v . ‘
changes fo the v4|2-renderer
existing compositor- L .
drm to host a v4lI2- v v
(" 2\
renderer. v4l2-renderer device libgbm/
for VSPD liodrm
User Space _ X “J X
Kernel Space > - *
GPU Kernel VSP V412 DRM/KMS
Driver Driver Driver
Weston Wayland Other New
[Components] Components [Components][Components] > IPC = APIC

33

Changes to compositor-drm
« Kept as minimum as possible.

 Changes are to load v4l2-renderer, and
pAss output buffers to v4l2-renderer.
Almost same as those of for pixman-
renderer.

« Minor changes on output buffer
allocations; DMABUF export and a read

permission to mmap'd output buffer are
added.

v4|2-renderer

 Media device agnostic layer.

« Does everything needed to import wl_kms
and wl_shm butfer 1o V4L2 Media Controller
arenaq, i.e. DMABUF.

- Calculations required fo figure out source
regions and destination regions are done in
v4l2-renderer.

« Anything that are not media device specific is
handled in v4l|2-renderer.

V4L2 renderer device

 Media device specific layer.

* Does everything specific to the media devices.

— Media Conftroller Framework requires the background
knowledge of the underlying media devices.

« Does actual job to compose surfaces specified as
DMABUF from v4l2-renderer.

V412 Renderer Device API
APl |Descriptons

init Initialize a v4I2 media controller device.
create_output Create an output. No buffer passed yet.
set_output_buffer Set an output buffer for the output.
create_surface Create a surface. No buffer passed yet.
attach_buffer Set a buffer for the surface.
begin_compose Begin a new composifion.
finish_compose Finish the composition.

draw_view Compose the surface.

get_capabilities Get capabilities of the V4L2 Renderer Device.

37

Current Status

* V4.2 Renderer is not official yet.
— https://aithub.com/thayama/weston

38

CONCLUSIONS

Was Media Controller the Right
Choicez?

 Yes and No.

« Configuring parameters and links are not
free. Not really great it we need to
configure media device very often.

— DRI could be alternative.

« On the other hand, use of the Linux
standard features including DMABUF is
great for extensibility and flexibility.

Was implementing new renderer
eqsye

Yes and No.

Other renderers help you implementing new
renderer.

Geometry was the most complex part of Weston.

— Global coordinate, Outfput local coordinate, and
view coordinate.

Renderers are responsible for understanding these
coordinaftes and rendering views to the correct
location.

— Pixman-renderer can give you some idea; how
complicated it is.

Coordinate System in Weston

View position is in -
lelorel . Opaqgue region is

specified in View

Coordinate.
/ Coordinate.

|/
- Rendering needs
to take care of

output local

/ \ coordinate.

Output O! I_OUTDUT | l

42

APPENDIX

Components used in Renesas
OpenGL/ES for Wayland

EGL with Wayland A thin layer to support Wayland specific EGL
Extension APIls and a native buffer type for
eglCreatelmageKHR().

https://qithub.com/thayama/libedl

wayland-kms A subclass of wl_buffer for to pass KMS BO.
Defines a wl_kms wayland protocol, and
server side codes.
hitps://github.com/thayama/wayland-kms

libogbm w/ KMS Backend GBM frontend extracted from Mesa and
used in Weston with a KMS Backend support.

https://github.com/thayama/libgbm

WSEGL for Wayland A bridge component between GPU and
Wayland.

44

