
Technology Consulting Company IGEL Co.,Ltd.

Technology Consulting Company
Research, Development &
Global Standard

Using Linux Media Controller
for Wayland/Weston Renderer

Takanari Hayama
taki@igel.co.jp
http://www.igel.co.jp/

1

•  Wayland/Weston Overview

•  Porting Weston to R-Car

•  Why Linux Media Controller Renderer?

•  Linux Media Controller Framework

•  V4L2 Renderer Design

•  Conclusions

2

Agenda

WAYLAND/WESTON OVERVIEW �

3

Weston Architecture

Wayland Client

Weston

Wayland Client

Compositor Core

Compositor
(e.g. DRM)

Renderer (e.g. GL)

Shell
(e.g. desktop)

Shell Client
(e.g. desktop-shell)

Wayland IPCLocal API Call

Confidential 4

Weston w/ DRM Backend

5

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES

OpenGL/ES

compositor-drm

gl-renderer

shell

libgbm/
libdrm

compositor-
core

pixman-
renderer

libpximan

GPU Kernel
Driver

DRM/KMS
Driver

Qt, EFL, etc.

Weston
Components

Wayland
Components

Other
Components

IPC API Call

User Space

Kernel Space

w
a

yl
a

n
d

p

ro
to

c
o

l

6

Rendering and Composition:
Overview (GL-Renderer)

Wayland Client

OpenGL/ES + wayland_egl

GPU driver for Wayland

Weston / DRM Compositor

OpenGL/ES + WL Ext. GBM

DRM/KMS

GPU

GPU Driver for Wayland

Display

wl_egl_window Type

wl_egl_window Type

RENDERING �

DISPLAYING �

wl_buffer Type

wl_buffer Type

FRAME BUFFERS �
gbm_surface Type

CLIENT BUFFERS �
wl_buffer Type

FULL SCREEN�
wl_buffer Type DRM/KMS BO Type

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components

Khronos w/
Wayland Ext.

OSS
Components

Hardware
Specific

w
a

yl
a

n
d

p

ro
to

c
o

l

7

Rendering and Composition:
Window Composition

Wayland Client

OpenGL/ES + wayland_egl

GPU driver for Wayland

Weston / DRM Compositor

OpenGL/ES + WL Ext. GBM

DRM/KMS

GPU

GPU driver for Wayland

Display

wl_egl_window Type

wl_egl_window Type

RENDERING �

DISPLAYING �

wl_buffer Type

wl_buffer Type

FRAME BUFFERS �
gbm_surface Type

CLIENT BUFFERS �
wl_buffer Type

FULL SCREEN�
wl_buffer Type DRM/KMS BO Type

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components

Khronos w/
Wayland Ext.

OSS
Components

Hardware
Specific

1. Render w/
OpenGL/ES

2.Commit buffers w/
eglSwapBuffers()

3. Import w/ eglCreateImageKHR()

6. Set composed
buffers as KMS
BOs.

5. Compose w/
OpenGL/ES

4. Register
destination frame
buffers allocated
with GBM.

w
a

yl
a

n
d

p

ro
to

c
o

l

8

Rendering and Composition:
Full Screen or Sprite Rendering

Wayland Client

OpenGL/ES + wayland_egl

GPU driver for Wayland

Weston / DRM Compositor

OpenGL/ES + WL Ext. GBM

DRM/KMS

GPU

GPU driver for Wayland

Display

wl_egl_window Type

wl_egl_window Type

RENDERING �

DISPLAYING �

wl_buffer Type

wl_buffer Type

FRAME BUFFERS �
gbm_surface Type

CLIENT BUFFERS �
wl_buffer Type

FULL SCREEN�
wl_buffer Type DRM/KMS BO Type

SCANOUT BUFFERS �

Software�

Hardware�

Wayland/Weston
Components

Khronos w/
Wayland Ext.

OSS
Components

Hardware
Specific

1. Render w/
OpenGL/ES

2.Commit buffers w/
eglSwapBuffers()

3. Import w/ gbm_bo_import()

4. Set composed
buffers as KMS
BOs.

PORTING WESTON TO R-CAR �

9

1.  OpenGL/ES for Wayland/Weston

2.  Zero Copy Mechanism for Native Buffer

“Typically, hardware enabling includes
modesetting/display and EGL/GLES2. On
top of that, Wayland needs a way to share
buffers efficiently between processes.”
http://wayland.freedesktop.org/architecture.html

10

What Are Required?

•  Must support the following Native Display Types for
eglGetDisplay():
–  wl_display for clients
–  gbm handle for Weston

•  Must support the following EGL_EXTENSIONs:
–  EGL_KHR_image_pixmap
–  EGL_WL_bind_wayland_display

•  Must support the following Native Pixmap Type for
eglCreateImageKHR():
–  EGL_WAYLAND_BUFFER_WL

•  Must support the following Wayland extension APIs:
–  eglBindWaylandDisplayWL
–  eglUnbindWaylandDisplayWL
–  eglQueryWaylandBufferWL

11

Wayland Requirements for
OpenGL/ES

WSEGL for Wayland

Weston for Renesas R-Car

12

Wayland Client

Renesas OpenGL/ES

libgbm w/ KMS
Backend

wayland-kms

Wayland/Weston
Components

New OSS
Components

Standard OSS
Components IPC API Call

Wayland Client Support Wayland Server Support

Weston (Wayland Server)

Wayland
Server Stub

EGL with Wayland Extension

Wayland Client
Stub

libdrm &
libkms

Proprietary

wayland-egl

1.  A client creates a wl_surface on the
server.

2.  The client attach a wl_buffer to the
created surface.

3.  The client submit the wl_buffer to the
server.

4.  The server takes the wl_buffer and
compose to the screen.

All of above should happen in zero-copy
manner!�

13

Wayland Composition Revisited

•  An abstract data type that represents a
reference to a pixel buffer.

•  2 open source implementations:
–  wl_shm : wayland standard

•  Based on Linux shared memory. Not physically contiguous.

–  wl_drm : Mesa standard
•  Based on DRI. Possibly physically contiguous.

•  Weston understands wl_shm only. Wl_drm is Mesa
specific. Thus, wl_drm is not handled by Weston,
but by Mesa internally.

14

What is wl_buffer by the way?

•  Requirements
– End-to-end Buffer Zero Copy
– Physically Contiguous Memory

•  wl_drm?
–  Implementation is too Mesa dependent.

•  Need more generic implementation.

15

Which wl_buffer implementation
to use?

•  KMS BO buffer type.
– https://github.com/thayama/wayland-kms
– Based on wl_drm in Mesa.

•  Imports DMABUF via PRIME, a dma-buf

interface layer in DRM.
– Originally, we used DRM Handle, but we now

use DMABUF instead.

•  Can directly pass video output from V4L2.

16

wl_kms

17

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver

18

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver
Buffer Allocation. Client
creates rendering surface
with EGL API. WSEGL
allocates memory with
KMS BO, and make
avaialable to GPU.

19

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU DriverRendering to the
allocated buffer.
GPU gets all
details needed
about the buffer
via WSEGL.

20

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver

When a client calls
eglSwapBuffers(), WSEGL
commits a buffer to the
server via Wayland. The
details of the buffer is
DMABUF fd, a stride, a
size, and a pixelf ormat.

21

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver

When the server receives
the buffer, it imports with
eglCreateImageKHR().

22

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver

WSEGL gets details of
the buffer from wayland-
kms, and asks to import
the given DMABUF. The
buffer is then made
available to GPU.

23

Buffer Zero Copying with wl_kms

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES gl-renderer

compositor-
drm

KMS BO

User Space

Kernel Space

Wayland
GPU Driver

KMS Driver

OpenGL/ES
Wayland

GPU Driver

Gl-renderer can now
refer the buffer passed
by the client, and
composes a final output.

WHY LINUX MEDIA
CONTROLLER RENDERER? �

24

•  Applications are heading towards more and
more GPU intensive.

•  People want to use GPU for more advanced
UI, rather than a simple window composition.
–  On the other hand, some people want to do

more complex composition using GPU. J

•  GPU Offloading is one way.
–  https://archive.fosdem.org/2014/schedule/

event/wayland_gpu/
–  But, still premature for real products.

25

Motivation

•  Not many embedded SoC has
multiple GPUs.

•  However, they often have
sophisticated hardware for video
signal processing that allow to do 2D
blending.

•  Why not use them?

26

Simpler Approach?

LINUX MEDIA CONTROLLER
FRAMEWORK �

27

•  Just a Video4Linux2 device.

•  Make V4L2 media device parameters
and pipelines configurable from user
space.
– http://linuxtv.org/downloads/presentations/

summit_jun_2010/20100206-fosdem.pdf

•  Important keywords: Entities, Pads, and
Links.

28

What is Media Controller?

29

Media Controller

Entity

Entity

1

0

0

1

Entity

0

2

1

Link

Entity

Source
Pad

Sink Pad

May have
multiple sink

pads

•  A standard Linux API to configure
complicated media devices from user
space.

•  On Renesas R-Car, VSP1, a device for
video signal processing, is exposed via
Media Controller API in Linux.

•  Zero-copy could be easily achieved via
DMABUF. Ideal for our use case.
– Can use wl_kms!

30

Why Media Controller?

•  Supported Features
– Scaling
– Cropping
– Pixel Format Conversion
– 4 to 1 Blending

•  As pipelines in VSP1 are configurable,
best suits to Media Controller
Framework!

31

Renesas R-Car VSP1

V4L2 RENDERER FOR WESTON�

32

V4L2 Renderer Support in Weston

33

Wayland Client

Wayland
Client Stub

Weston (Wayland Server)

Wayland
Server StubOpenGL/ES

v4l2-renderer device
for VSPD

compositor-drm

v4l2-renderer

shell

libgbm/
libdrm

compositor-
core

GPU Kernel
Driver

DRM/KMS
Driver

Qt, EFL, etc.

Weston
Components

Wayland
Components

Other
Components

IPC API Call

User Space

Kernel Space
VSP V4L2

Driver

New
Components

New components
added to Weston.
Plus Minimum
changes to the
existing compositor-
drm to host a v4l2-
renderer.

•  Kept as minimum as possible.

•  Changes are to load v4l2-renderer, and
pass output buffers to v4l2-renderer.
Almost same as those of for pixman-
renderer.

•  Minor changes on output buffer
allocations; DMABUF export and a read
permission to mmap’d output buffer are
added.

34

Changes to compositor-drm

•  Media device agnostic layer.

•  Does everything needed to import wl_kms
and wl_shm buffer to V4L2 Media Controller
arena, i.e. DMABUF.

•  Calculations required to figure out source
regions and destination regions are done in
v4l2-renderer.

•  Anything that are not media device specific is
handled in v4l2-renderer.

35

v4l2-renderer

•  Media device specific layer.

•  Does everything specific to the media devices.
–  Media Controller Framework requires the background

knowledge of the underlying media devices.

•  Does actual job to compose surfaces specified as
DMABUF from v4l2-renderer.

36

V4L2 renderer device

API � Descriptions�
init Initialize a v4l2 media controller device.

create_output Create an output. No buffer passed yet.

set_output_buffer Set an output buffer for the output.

create_surface Create a surface. No buffer passed yet.

attach_buffer Set a buffer for the surface.

begin_compose Begin a new composition.

finish_compose Finish the composition.

draw_view Compose the surface.

get_capabilities Get capabilities of the V4L2 Renderer Device.

37

V4L2 Renderer Device API

•  V4L2 Renderer is not official yet.
– https://github.com/thayama/weston

38

Current Status

CONCLUSIONS �

39

•  Yes and No.

•  Configuring parameters and links are not
free. Not really great if we need to
configure media device very often.
– DRI could be alternative.

•  On the other hand, use of the Linux
standard features including DMABUF is
great for extensibility and flexibility.

40

Was Media Controller the Right
Choice?

•  Yes and No.

•  Other renderers help you implementing new
renderer.

•  Geometry was the most complex part of Weston.
–  Global coordinate, Output local coordinate, and

view coordinate.

•  Renderers are responsible for understanding these
coordinates and rendering views to the correct
location.
–  Pixman-renderer can give you some idea; how

complicated it is.

41

Was implementing new renderer
easy?

42

Coordinate System in Weston

Output 0
Output 1

opaque
region

View position is in
Global
Coordinate.

Rendering needs
to take care of
output local
coordinate.

Opaque region is
specified in View
Coordinate.

APPENDIX �

43

Components used in Renesas
OpenGL/ES for Wayland

Components � Descriptions�
EGL with Wayland
Extension

A thin layer to support Wayland specific EGL
APIs and a native buffer type for
eglCreateImageKHR().
https://github.com/thayama/libegl

wayland-kms A subclass of wl_buffer for to pass KMS BO.
Defines a wl_kms wayland protocol, and
server side codes.
https://github.com/thayama/wayland-kms

libgbm w/ KMS Backend GBM frontend extracted from Mesa and
used in Weston with a KMS Backend support.
https://github.com/thayama/libgbm

WSEGL for Wayland A bridge component between GPU and
Wayland.

44

