
The DRM/KMS subsystem from a
newbie’s point of view

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 1/49

Boris Brezillon

I Embedded Linux engineer and trainer at Free Electrons
I Embedded Linux development: kernel and driver

development, system integration, boot time and power
consumption optimization, consulting, etc.

I Embedded Linux training, Linux driver development training
and Android system development training, with materials
freely available under a Creative Commons license.

I http://free-electrons.com

I Contributions
I Kernel support for the AT91 SoCs ARM SoCs from Atmel
I Kernel support for the sunXi SoCs ARM SoCs from

Allwinner

I Living in Toulouse, south west of France

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 2/49

http://free-electrons.com

Agenda

Context description
What is this talk about ?
How to display things in Linux ?

DRM/KMS overview
Global architecture
Partial description of the components

Sharing my experience
Tips on developing a DRM/KMS driver
Integration with userland graphic stacks

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 3/49

Context: What is this talk about ?

I Sharing my understanding of the DRM/KMS subsytem
learned while working on the Atmel HLCDC driver

I Explaining some key aspects (from my point of view) of the
DRM/KMS subsystem

I Explaining some common concepts in the video/graphic world
and showing how they are implemented in DRM/KMS

I Sharing some tips on how to develop a KMS driver based on
my experience

I This talk is not:
I A detailed description of the DRM/KMS subsystem
I A description on how to use a DRM device (user-space API)
I And most importantly: this talk is not given by an expert

I Don’t hesitate to correct me if you think I’m wrong ;-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 4/49

Context: How to display things in the Linux world

I Different solutions, provided by different subsystems:
I FBDEV: Framebuffer Device
I DRM/KMS: Direct Rendering Manager / Kernel Mode Setting
I V4L2: Video For Linux 2

I How to choose one: it depends on your needs
I Each subsytem provides its own set of features
I Different levels of complexity
I Different levels of activity

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 5/49

Context: Why choosing DRM/KMS ?

I Actively maintained

I Provides fine grained control on the display pipeline

I Widely used by user-space graphic stacks

I Provides a full set of advanced features
I Why not FBDEV ?

I Less actively maintained
I Does not provides all the features we needed (overlays, hw

cursor, ...)
I Developers are now encouraged to move to DRM/KMS

I Why not V4L2 ?
I Well suited for video capture and specific video output devices

but not for ”complex” display controllers

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 6/49

DRM/KMS: Definition

I DRM stands for Direct Rendering Manager and was
introduced to deal with graphic cards embedding GPUs

I KMS stands for Kernel Mode Setting and is a sub-part of the
DRM API

I Though rendering and mode setting are now splitted in two
different APIs (accessible through /dev/dri/renderX and
/dev/dri/controlDX)

I KMS provide a way to configure the display pipeline of a
graphic card (or an embedded system)

I KMS is what we’re interested in when looking for an FBDEV
alternative

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 7/49

DRM/KMS: Architecture

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 8/49

DRM/KMS Components: Framebuffer

I This is a standard object storing informations about the
content to be displayed

I Informations stored:
I References to memory regions used to store display content
I Format of the frame stored in memory
I Active area within the memory region (content that will

displayed)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 9/49

DRM/KMS Components: Framebuffer

I DRM Framebuffer is a virtual object (relies on a specific
implementation)

I Framebuffer implementation depends on:
I The memory manager in use (GEM or TTM)
I The display controller capabilities:

I Supported DMA transfer types (Contiguous Memory or
Scatter Gather)

I IOMMU

I Default implementation available for GEM objects using CMA
(Contiguous Memory Allocator):
drivers/gpu/drm/drm_fb_cma_helper.c

I Other implementations usually depend on the Display
Controller

I Scatter Gather example: drivers/gpu/drm/tegra/
I IOMMU example: drivers/gpu/drm/exynos/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 10/49

DRM/KMS Components: Framebuffer

struct drm_framebuffer {

[...]

unsigned int pitches[4];

unsigned int offsets[4];

unsigned int width;

unsigned int height;

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 11/49

DRM/KMS Components: Framebuffer

struct drm_framebuffer {

[...]

uint32_t pixel_format; /* fourcc format */

[...]

};

I pixel_format describes the memory buffer organization

I Uses FOURCC format codes

I Supported formats are defined here:
include/drm/drm_fourcc.h

I These FOURCC formats are not standardized and are thus
only valid within the DRM/KMS subsystem

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 12/49

DRM/KMS Components: Framebuffer

I Three types of formats used by the DRM/KMS subsystem:
I RGB: Each pixel is encoded with an RGB tuple (a specific

value for each component)
I YUV: Same thing but with Y, U and V components
I C8: Uses a conversion table to map a value to an RGB tuple

I YUV support different modes:
I Packed: One memory region storing all components (Y, U and

V)
I Semiplanar: One memory region for Y component and one for

UV components
I Planar: One memory region for each component

I Each memory region storing a frame component (Y, U or V)
is called a plane

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 13/49

DRM/KMS Components: Framebuffer

I Packed formats: only the first
offsets and pitches entries are
used

I Semiplanar formats: the first
two entries are used

I Planar: the first 3 entries are
used

I Don’t know what is the fourth
entry used for (alpha plane ?)

struct drm_framebuffer {

[...]

unsigned int pitches[4];

unsigned int offsets[4];

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 14/49

DRM/KMS Components: CRTC

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 15/49

DRM/KMS Components: CRTC

I CRTC stands for CRT Controller, though it’s not only related
to CRT displays

I Configure the appropriate display settings:
I Display timings
I Display resolution

I Scan out frame buffer content to one or more displays

I Update the frame buffer
I Implemented through struct drm_crtc_funcs and

struct drm_crtc_helper_funcs

struct drm_crtc_funcs {

[...]

int (*set_config)(struct drm_mode_set *set);

int (*page_flip)(struct drm_crtc *crtc,

struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event, uint32_t flags);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 16/49

DRM/KMS Components: CRTC (mode setting)

I set_config is responsible for configuring several things:
I Update the frame buffer being scanned out
I Configure the display mode: timings, resolution, ...
I Attach connectors/encoders to the CRTC

I Use drm_crtc_helper_set_config function and implement
struct drm_crtc_helper_funcs unless you really know
what you’re doing

struct drm_crtc_helper_funcs {

[...]

int (*mode_set)(struct drm_crtc *crtc,

struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode,

int x, int y,

struct drm_framebuffer *old_fb);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 17/49

DRM/KMS Components: CRTC (display timings)

I How display content is updated hasn’t changed much since
the creation of CRT monitors (though technology has evolved)

I Requires at least 3 signals:
I Pixel Clock: drive the pixel stream (1 pixel updated per clock

cycle)
I VSYNC: Vertical Synchronisation signal, asserted at the

beginning of each frame
I HSYNC: Horizontal Synchronisation signal, asserted at the

beginning of each pixel line

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 18/49

DRM/KMS Components: CRTC (display timings)

I HSYNC pulse is used to inform the display it should go to the
next pixel line

I VSYNC pulse is used to inform the display it should start to
display a new frame and thus go back to the first line

I What’s done during the VSYNC and HSYNC pulses depends
on the display technology

I Front and back porch timings are reserved time around the
sync pulses. Action taken during those periods also depends
on the display technology

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 19/49

DRM/KMS Components: CRTC (display timings)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 20/49

DRM/KMS Components: CRTC (display timings)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 21/49

DRM/KMS Components: CRTC (mode setting)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/49

DRM/KMS Components: CRTC (mode setting)

static int atmel_hlcdc_crtc_mode_set(struct drm_crtc *c,

struct drm_display_mode *mode,

struct drm_display_mode *adj,

int x, int y,

struct drm_framebuffer *old_fb)

{

/* Initialize local variables */

struct atmel_hlcdc_crtc *crtc = drm_crtc_to_atmel_hlcdc_crtc(c);

[...]

/* Do some checks on the requested mode */

if (atmel_hlcdc_dc_mode_valid(crtc->dc, adj) != MODE_OK)

return -EINVAL;

/* Convert DRM display timings into controller specific ones */

vm.vfront_porch = adj->crtc_vsync_start - adj->crtc_vdisplay;

[...]

/* Configure controller timings */

regmap_write(regmap, ATMEL_HLCDC_CFG(1), (vm.hsync_len - 1) | ((vm.vsync_len - 1) << 16));

[...]

/* Update primary plane attached to the CRTC */

fb = plane->fb;

plane->fb = old_fb;

return plane->funcs->update_plane(plane, c, fb, 0, 0, adj->hdisplay, adj->vdisplay,

x << 16, y << 16, adj->hdisplay << 16,

adj->vdisplay << 16);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 23/49

DRM/KMS Components: CRTC (page flipping)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 24/49

DRM/KMS Components: CRTC (page flipping)

I page_flip is responsible for queueing a frame update

struct drm_crtc_funcs {

[...]

int (*page_flip)(struct drm_crtc *crtc,

struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event,

uint32_t flags);

[...]

};

I The frame is really updated at the next VBLANK (interval
between 2 frames)

I Only one page flip at a time

I Should return EBUSY if a page flip is already queued

I event is used to inform the user when page flip is done (the 2
frames are actually flipped)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 25/49

DRM/KMS Components: CRTC (page flipping)

static int atmel_hlcdc_crtc_page_flip(struct drm_crtc *c, struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event,

uint32_t page_flip_flags)

{

/* Initialize local variables */

struct atmel_hlcdc_crtc *crtc = drm_crtc_to_atmel_hlcdc_crtc(c);

[...]

/* Check if a there’s a pending page flip request */

spin_lock_irqsave(&dev->event_lock, flags);

if (crtc->event)

ret = -EBUSY;

spin_unlock_irqrestore(&dev->event_lock, flags);

if (ret)

return ret;

[...]

/* Store the event to inform the caller when the page flip is finished */

if (event) {

drm_vblank_get(c->dev, crtc->id);

spin_lock_irqsave(&dev->event_lock, flags);

crtc->event = event;

spin_unlock_irqrestore(&dev->event_lock, flags);

}

/* Queue a primary plane update request */

ret = atmel_hlcdc_plane_apply_update_req(plane, &req);

[...]

return ret;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 26/49

DRM/KMS Components: Planes

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 27/49

DRM/KMS Components: Planes

I A plane is an image layer (Be careful: not related to the
planes referenced by a framebuffer)

I The final image displayed by the CRTC is the composition of
one or several planes

I Different plane types:
I DRM_PLANE_TYPE_PRIMARY (mandatory, 1 per CRTC)

I Used by the CRTC to store its frame buffer
I Typically used to display a background image or graphics

content
I DRM_PLANE_TYPE_CURSOR (optional, 1 per CRTC)

I Used to display a cursor (like a mouse cursor)
I DRM_PLANE_TYPE_OVERLAY (optional, 0 to N per CRTC)

I Used to benefit from hardware composition
I Typically used to display windows with dynamic content (like

a video)
I In case of multiple CRTCs in the display controller, the

overlay planes can often be dynamically attached to a specific
CRTC when required

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 28/49

DRM/KMS Components: Planes

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 29/49

DRM/KMS Components: Planes

I Plane support implemented through
struct drm_plane_funcs

struct drm_plane_funcs {

[...]

int (*update_plane)(struct drm_plane *plane,

struct drm_crtc *crtc,

struct drm_framebuffer *fb,

int crtc_x, int crtc_y,

unsigned int crtc_w, unsigned int crtc_h,

uint32_t src_x, uint32_t src_y,

uint32_t src_w, uint32_t src_h);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 30/49

DRM/KMS Components: Planes (update)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 31/49

DRM/KMS Components: Planes (update)

static int atmel_hlcdc_plane_update(struct drm_plane *p,

struct drm_crtc *crtc,

struct drm_framebuffer *fb,

int crtc_x, int crtc_y,

unsigned int crtc_w, unsigned int crtc_h,

uint32_t src_x, uint32_t src_y,

uint32_t src_w, uint32_t src_h)

{

struct atmel_hlcdc_plane *plane = drm_plane_to_atmel_hlcdc_plane(p);

struct atmel_hlcdc_plane_update_req req;

int ret = 0;

/* Fill update request with informations passed in arguments */

memset(&req, 0, sizeof(req));

req.crtc_x = crtc_x;

req.crtc_y = crtc_y;

[...]

/* Prepare a plane update request: reserve resources, check request

coherency, ... */

ret = atmel_hlcdc_plane_prepare_update_req(&plane->base, &req);

if (ret)

return ret;

[...]

/* Queue the plane update request: update DMA transfers at the next

VBLANK event */

return atmel_hlcdc_plane_apply_update_req(&plane->base, &req);

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 32/49

DRM/KMS Components: Connector

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 33/49

DRM/KMS Components: Connector

I Represent a display connector (HDMI, DP, VGA, DVI, ...)

I Transmit the signals to the display

I Detect display connection/removal

I Expose display supported modes

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 34/49

DRM/KMS Components: Connector

I Implemented through struct drm_connector_funcs and
struct drm_connector_helper_funcs

struct drm_connector_helper_funcs {

int (*get_modes)(struct drm_connector *connector);

enum drm_mode_status

(*mode_valid)(struct drm_connector *connector,

struct drm_display_mode *mode);

struct drm_encoder *

(*best_encoder)(struct drm_connector *connector);

};

struct drm_connector_funcs {

[...]

enum drm_connector_status

(*detect)(struct drm_connector *connector, bool force);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 35/49

DRM/KMS Components: Connector (get modes)

static int rcar_du_lvds_connector_get_modes(struct drm_connector *connector)

{

struct rcar_du_lvds_connector *lvdscon = to_rcar_lvds_connector(connector);

struct drm_display_mode *mode;

/* Create a drm_display_mode */

mode = drm_mode_create(connector->dev);

if (mode == NULL)

return 0;

/* Fill the mode with the appropriate timings and flags */

mode->type = DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER;

mode->clock = lvdscon->panel->mode.clock;

mode->hdisplay = lvdscon->panel->mode.hdisplay;

[...]

/* Give this name a name based on the resolution: e.g. 800x600 */

drm_mode_set_name(mode);

/* Add this mode to the connector list */

drm_mode_probed_add(connector, mode);

/* Return the number of added modes */

return 1;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 36/49

DRM/KMS Components: Encoder

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 37/49

DRM/KMS Components: Encoder

I Directly related to the Connector concept

I Responsible for converting a frame into the appropriate format
to be transmitted through the connector

I Example: HDMI connector is transmiting TMDS encoded
data, and thus need a TMDS encoder.

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 38/49

DRM/KMS Components: Encoder

I Implemented through struct drm_encoder_funcs and
struct drm_encoder_helper_funcs

struct drm_encoder_helper_funcs {

[...]

bool (*mode_fixup)(struct drm_encoder *encoder,

const struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode);

[...]

void (*mode_set)(struct drm_encoder *encoder,

struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode);

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 39/49

DRM/KMS Components: DRM device

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 40/49

DRM/KMS Components: DRM device

I Responsible for aggregating the other components

I Device exposed to the userspace (handles all user-space
requests)

I Implemented through struct drm_driver

struct drm_driver {

int (*load) (struct drm_device *, unsigned long flags);

[...]

int (*unload) (struct drm_device *);

[...]

u32 driver_features;

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/49

DRM/KMS Components: DRM device

I Call drm_dev_alloc then drm_dev_register to register a
DRM device

I load and unload are responsible for instantiating and
destroying the DRM components attached to a DRM device

I driver_features should contain DRM_RENDER,
DRM_MODE_SET or both depending on the DRM device features

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 42/49

DRM/KMS Components: DRM device

static struct drm_driver atmel_hlcdc_dc_driver = {

.driver_features = DRIVER_HAVE_IRQ | DRIVER_GEM | DRIVER_MODESET,

.load = atmel_hlcdc_dc_load,

.unload = atmel_hlcdc_dc_unload,

[...]

.name = "atmel-hlcdc",

.desc = "Atmel HLCD Controller DRM",

.date = "20141504",

.major = 1,

.minor = 0,

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 43/49

DRM/KMS Components: DRM device

static int atmel_hlcdc_dc_drm_probe(struct platform_device *pdev)

{

struct drm_device *ddev;

int ret;

ddev = drm_dev_alloc(&atmel_hlcdc_dc_driver, &pdev->dev);

if (!ddev)

return -ENOMEM;

ret = drm_dev_set_unique(ddev, dev_name(ddev->dev));

if (ret) {

drm_dev_unref(ddev);

return ret;

}

ret = drm_dev_register(ddev, 0);

if (ret) {

drm_dev_unref(ddev);

return ret;

}

return 0;

}

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 44/49

DRM/KMS Components: Other concepts

I DPMS: Display Power Management Signaling
I Properties: transversal concept used to expose display pipeline

behaviors
I Can be attached to all the component we’ve seen so far
I Examples:

I Rotation is a plane property
I EDID (Unique display ID exposed by a monitor) is a connector

property
I ...

I Bridge: represent an external encoder accessible through a
bus (spi, i2c)

I Encoder slave: pretty much the same thing (still don’t get the
difference)

I FBDEV emulation

I Multiple CRTCs, Encoders and Connectors

I Other concepts I’m not aware of yet :-)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 45/49

DRM/KMS Sequence Diagram: Mode Setting

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 46/49

KMS Driver: Development Tips

I Read the documentation:
https://www.kernel.org/doc/htmldocs/drm/

I Take a look at other drivers
I Choose a similar driver (in terms of capabilities)
I Check that the driver you are basing your work on is recent

and well maintained

I Check for new features: the DRM subsystem is constantly
evolving

I Use helper functions and structures as much as possible

I Start small/simple and add new features iteratively (e.g. only
one primary plane and one encoder/connector pair)

I Use simple user-space tools to test it like modetest

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 47/49

KMS Userland Graphic Stacks

I Tried weston (standard wayland implementation) and Qt with
a KMS backend

I First thing to note: they’re not ready for KMS drivers without
OpenGL support (DRM_RENDER capabilities)!

I Wayland works (thanks to pixmam support) but does not
support planes and hardware cursors when OpenGL support is
disabled

I Qt only works with the fbdev backend
I WIP on the mesa stack to provide soft OpenGL when using a

KMS driver without OpenGL support
I But the window composition will most likely be done through

the soft OpenGL, which implies poor perfomances

I Not sure you can choose a specific plane when using a window
manager (e.g. stream video content on a plane which support
YUV format)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 48/49

Questions?

Boris Brezillon

boris.brezillon@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 49/49

http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/

	Context description
	DRM/KMS overview
	Sharing my experience

