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Context: What is this talk about ?

I Sharing my understanding of the DRM/KMS subsytem
learned while working on the Atmel HLCDC driver

I Explaining some key aspects (from my point of view) of the
DRM/KMS subsystem

I Explaining some common concepts in the video/graphic world
and showing how they are implemented in DRM/KMS

I Sharing some tips on how to develop a KMS driver based on
my experience

I This talk is not:
I A detailed description of the DRM/KMS subsystem
I A description on how to use a DRM device (user-space API)
I And most importantly: this talk is not given by an expert

I Don’t hesitate to correct me if you think I’m wrong ;-)
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Context: How to display things in the Linux world

I Different solutions, provided by different subsystems:
I FBDEV: Framebuffer Device
I DRM/KMS: Direct Rendering Manager / Kernel Mode Setting
I V4L2: Video For Linux 2

I How to choose one: it depends on your needs
I Each subsytem provides its own set of features
I Different levels of complexity
I Different levels of activity
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Context: Why choosing DRM/KMS ?

I Actively maintained

I Provides fine grained control on the display pipeline

I Widely used by user-space graphic stacks

I Provides a full set of advanced features
I Why not FBDEV ?

I Less actively maintained
I Does not provides all the features we needed (overlays, hw

cursor, ...)
I Developers are now encouraged to move to DRM/KMS

I Why not V4L2 ?
I Well suited for video capture and specific video output devices

but not for ”complex” display controllers
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DRM/KMS: Definition

I DRM stands for Direct Rendering Manager and was
introduced to deal with graphic cards embedding GPUs

I KMS stands for Kernel Mode Setting and is a sub-part of the
DRM API

I Though rendering and mode setting are now splitted in two
different APIs (accessible through /dev/dri/renderX and
/dev/dri/controlDX)

I KMS provide a way to configure the display pipeline of a
graphic card (or an embedded system)

I KMS is what we’re interested in when looking for an FBDEV
alternative
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DRM/KMS: Architecture
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DRM/KMS Components: Framebuffer

I This is a standard object storing informations about the
content to be displayed

I Informations stored:
I References to memory regions used to store display content
I Format of the frame stored in memory
I Active area within the memory region (content that will

displayed)
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DRM/KMS Components: Framebuffer

I DRM Framebuffer is a virtual object (relies on a specific
implementation)

I Framebuffer implementation depends on:
I The memory manager in use (GEM or TTM)
I The display controller capabilities:

I Supported DMA transfer types (Contiguous Memory or
Scatter Gather)

I IOMMU

I Default implementation available for GEM objects using CMA
(Contiguous Memory Allocator):
drivers/gpu/drm/drm_fb_cma_helper.c

I Other implementations usually depend on the Display
Controller

I Scatter Gather example: drivers/gpu/drm/tegra/
I IOMMU example: drivers/gpu/drm/exynos/
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DRM/KMS Components: Framebuffer

struct drm_framebuffer {

[...]

unsigned int pitches[4];

unsigned int offsets[4];

unsigned int width;

unsigned int height;

[...]

};
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DRM/KMS Components: Framebuffer

struct drm_framebuffer {

[...]

uint32_t pixel_format; /* fourcc format */

[...]

};

I pixel_format describes the memory buffer organization

I Uses FOURCC format codes

I Supported formats are defined here:
include/drm/drm_fourcc.h

I These FOURCC formats are not standardized and are thus
only valid within the DRM/KMS subsystem
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DRM/KMS Components: Framebuffer

I Three types of formats used by the DRM/KMS subsystem:
I RGB: Each pixel is encoded with an RGB tuple (a specific

value for each component)
I YUV: Same thing but with Y, U and V components
I C8: Uses a conversion table to map a value to an RGB tuple

I YUV support different modes:
I Packed: One memory region storing all components (Y, U and

V)
I Semiplanar: One memory region for Y component and one for

UV components
I Planar: One memory region for each component

I Each memory region storing a frame component (Y, U or V)
is called a plane
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DRM/KMS Components: Framebuffer

I Packed formats: only the first
offsets and pitches entries are
used

I Semiplanar formats: the first
two entries are used

I Planar: the first 3 entries are
used

I Don’t know what is the fourth
entry used for (alpha plane ?)

struct drm_framebuffer {

[...]

unsigned int pitches[4];

unsigned int offsets[4];

[...]

};
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DRM/KMS Components: CRTC
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DRM/KMS Components: CRTC

I CRTC stands for CRT Controller, though it’s not only related
to CRT displays

I Configure the appropriate display settings:
I Display timings
I Display resolution

I Scan out frame buffer content to one or more displays

I Update the frame buffer
I Implemented through struct drm_crtc_funcs and

struct drm_crtc_helper_funcs

struct drm_crtc_funcs {

[...]

int (*set_config)(struct drm_mode_set *set);

int (*page_flip)(struct drm_crtc *crtc,

struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event, uint32_t flags);

[...]

};
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DRM/KMS Components: CRTC (mode setting)

I set_config is responsible for configuring several things:
I Update the frame buffer being scanned out
I Configure the display mode: timings, resolution, ...
I Attach connectors/encoders to the CRTC

I Use drm_crtc_helper_set_config function and implement
struct drm_crtc_helper_funcs unless you really know
what you’re doing

struct drm_crtc_helper_funcs {

[...]

int (*mode_set)(struct drm_crtc *crtc,

struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode,

int x, int y,

struct drm_framebuffer *old_fb);

[...]

};
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DRM/KMS Components: CRTC (display timings)

I How display content is updated hasn’t changed much since
the creation of CRT monitors (though technology has evolved)

I Requires at least 3 signals:
I Pixel Clock: drive the pixel stream (1 pixel updated per clock

cycle)
I VSYNC: Vertical Synchronisation signal, asserted at the

beginning of each frame
I HSYNC: Horizontal Synchronisation signal, asserted at the

beginning of each pixel line
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DRM/KMS Components: CRTC (display timings)

I HSYNC pulse is used to inform the display it should go to the
next pixel line

I VSYNC pulse is used to inform the display it should start to
display a new frame and thus go back to the first line

I What’s done during the VSYNC and HSYNC pulses depends
on the display technology

I Front and back porch timings are reserved time around the
sync pulses. Action taken during those periods also depends
on the display technology
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DRM/KMS Components: CRTC (display timings)
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DRM/KMS Components: CRTC (display timings)
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DRM/KMS Components: CRTC (mode setting)

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 22/49



DRM/KMS Components: CRTC (mode setting)

static int atmel_hlcdc_crtc_mode_set(struct drm_crtc *c,

struct drm_display_mode *mode,

struct drm_display_mode *adj,

int x, int y,

struct drm_framebuffer *old_fb)

{

/* Initialize local variables */

struct atmel_hlcdc_crtc *crtc = drm_crtc_to_atmel_hlcdc_crtc(c);

[...]

/* Do some checks on the requested mode */

if (atmel_hlcdc_dc_mode_valid(crtc->dc, adj) != MODE_OK)

return -EINVAL;

/* Convert DRM display timings into controller specific ones */

vm.vfront_porch = adj->crtc_vsync_start - adj->crtc_vdisplay;

[...]

/* Configure controller timings */

regmap_write(regmap, ATMEL_HLCDC_CFG(1), (vm.hsync_len - 1) | ((vm.vsync_len - 1) << 16));

[...]

/* Update primary plane attached to the CRTC */

fb = plane->fb;

plane->fb = old_fb;

return plane->funcs->update_plane(plane, c, fb, 0, 0, adj->hdisplay, adj->vdisplay,

x << 16, y << 16, adj->hdisplay << 16,

adj->vdisplay << 16);

}
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DRM/KMS Components: CRTC (page flipping)
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DRM/KMS Components: CRTC (page flipping)

I page_flip is responsible for queueing a frame update

struct drm_crtc_funcs {

[...]

int (*page_flip)(struct drm_crtc *crtc,

struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event,

uint32_t flags);

[...]

};

I The frame is really updated at the next VBLANK (interval
between 2 frames)

I Only one page flip at a time

I Should return EBUSY if a page flip is already queued

I event is used to inform the user when page flip is done (the 2
frames are actually flipped)
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DRM/KMS Components: CRTC (page flipping)

static int atmel_hlcdc_crtc_page_flip(struct drm_crtc *c, struct drm_framebuffer *fb,

struct drm_pending_vblank_event *event,

uint32_t page_flip_flags)

{

/* Initialize local variables */

struct atmel_hlcdc_crtc *crtc = drm_crtc_to_atmel_hlcdc_crtc(c);

[...]

/* Check if a there’s a pending page flip request */

spin_lock_irqsave(&dev->event_lock, flags);

if (crtc->event)

ret = -EBUSY;

spin_unlock_irqrestore(&dev->event_lock, flags);

if (ret)

return ret;

[...]

/* Store the event to inform the caller when the page flip is finished */

if (event) {

drm_vblank_get(c->dev, crtc->id);

spin_lock_irqsave(&dev->event_lock, flags);

crtc->event = event;

spin_unlock_irqrestore(&dev->event_lock, flags);

}

/* Queue a primary plane update request */

ret = atmel_hlcdc_plane_apply_update_req(plane, &req);

[...]

return ret;

}
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DRM/KMS Components: Planes
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DRM/KMS Components: Planes

I A plane is an image layer (Be careful: not related to the
planes referenced by a framebuffer)

I The final image displayed by the CRTC is the composition of
one or several planes

I Different plane types:
I DRM_PLANE_TYPE_PRIMARY (mandatory, 1 per CRTC)

I Used by the CRTC to store its frame buffer
I Typically used to display a background image or graphics

content
I DRM_PLANE_TYPE_CURSOR (optional, 1 per CRTC)

I Used to display a cursor (like a mouse cursor)
I DRM_PLANE_TYPE_OVERLAY (optional, 0 to N per CRTC)

I Used to benefit from hardware composition
I Typically used to display windows with dynamic content (like

a video)
I In case of multiple CRTCs in the display controller, the

overlay planes can often be dynamically attached to a specific
CRTC when required
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DRM/KMS Components: Planes
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DRM/KMS Components: Planes

I Plane support implemented through
struct drm_plane_funcs

struct drm_plane_funcs {

[...]

int (*update_plane)(struct drm_plane *plane,

struct drm_crtc *crtc,

struct drm_framebuffer *fb,

int crtc_x, int crtc_y,

unsigned int crtc_w, unsigned int crtc_h,

uint32_t src_x, uint32_t src_y,

uint32_t src_w, uint32_t src_h);

[...]

};
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DRM/KMS Components: Planes (update)
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DRM/KMS Components: Planes (update)

static int atmel_hlcdc_plane_update(struct drm_plane *p,

struct drm_crtc *crtc,

struct drm_framebuffer *fb,

int crtc_x, int crtc_y,

unsigned int crtc_w, unsigned int crtc_h,

uint32_t src_x, uint32_t src_y,

uint32_t src_w, uint32_t src_h)

{

struct atmel_hlcdc_plane *plane = drm_plane_to_atmel_hlcdc_plane(p);

struct atmel_hlcdc_plane_update_req req;

int ret = 0;

/* Fill update request with informations passed in arguments */

memset(&req, 0, sizeof(req));

req.crtc_x = crtc_x;

req.crtc_y = crtc_y;

[...]

/* Prepare a plane update request: reserve resources, check request

coherency, ... */

ret = atmel_hlcdc_plane_prepare_update_req(&plane->base, &req);

if (ret)

return ret;

[...]

/* Queue the plane update request: update DMA transfers at the next

VBLANK event */

return atmel_hlcdc_plane_apply_update_req(&plane->base, &req);

}
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DRM/KMS Components: Connector
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DRM/KMS Components: Connector

I Represent a display connector (HDMI, DP, VGA, DVI, ...)

I Transmit the signals to the display

I Detect display connection/removal

I Expose display supported modes
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DRM/KMS Components: Connector

I Implemented through struct drm_connector_funcs and
struct drm_connector_helper_funcs

struct drm_connector_helper_funcs {

int (*get_modes)(struct drm_connector *connector);

enum drm_mode_status

(*mode_valid)(struct drm_connector *connector,

struct drm_display_mode *mode);

struct drm_encoder *

(*best_encoder)(struct drm_connector *connector);

};

struct drm_connector_funcs {

[...]

enum drm_connector_status

(*detect)(struct drm_connector *connector, bool force);

[...]

};
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DRM/KMS Components: Connector (get modes)

static int rcar_du_lvds_connector_get_modes(struct drm_connector *connector)

{

struct rcar_du_lvds_connector *lvdscon = to_rcar_lvds_connector(connector);

struct drm_display_mode *mode;

/* Create a drm_display_mode */

mode = drm_mode_create(connector->dev);

if (mode == NULL)

return 0;

/* Fill the mode with the appropriate timings and flags */

mode->type = DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER;

mode->clock = lvdscon->panel->mode.clock;

mode->hdisplay = lvdscon->panel->mode.hdisplay;

[...]

/* Give this name a name based on the resolution: e.g. 800x600 */

drm_mode_set_name(mode);

/* Add this mode to the connector list */

drm_mode_probed_add(connector, mode);

/* Return the number of added modes */

return 1;

}
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DRM/KMS Components: Encoder
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DRM/KMS Components: Encoder

I Directly related to the Connector concept

I Responsible for converting a frame into the appropriate format
to be transmitted through the connector

I Example: HDMI connector is transmiting TMDS encoded
data, and thus need a TMDS encoder.
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DRM/KMS Components: Encoder

I Implemented through struct drm_encoder_funcs and
struct drm_encoder_helper_funcs

struct drm_encoder_helper_funcs {

[...]

bool (*mode_fixup)(struct drm_encoder *encoder,

const struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode);

[...]

void (*mode_set)(struct drm_encoder *encoder,

struct drm_display_mode *mode,

struct drm_display_mode *adjusted_mode);

[...]

};
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DRM/KMS Components: DRM device
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DRM/KMS Components: DRM device

I Responsible for aggregating the other components

I Device exposed to the userspace (handles all user-space
requests)

I Implemented through struct drm_driver

struct drm_driver {

int (*load) (struct drm_device *, unsigned long flags);

[...]

int (*unload) (struct drm_device *);

[...]

u32 driver_features;

[...]

};

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com 41/49



DRM/KMS Components: DRM device

I Call drm_dev_alloc then drm_dev_register to register a
DRM device

I load and unload are responsible for instantiating and
destroying the DRM components attached to a DRM device

I driver_features should contain DRM_RENDER,
DRM_MODE_SET or both depending on the DRM device features
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DRM/KMS Components: DRM device

static struct drm_driver atmel_hlcdc_dc_driver = {

.driver_features = DRIVER_HAVE_IRQ | DRIVER_GEM | DRIVER_MODESET,

.load = atmel_hlcdc_dc_load,

.unload = atmel_hlcdc_dc_unload,

[...]

.name = "atmel-hlcdc",

.desc = "Atmel HLCD Controller DRM",

.date = "20141504",

.major = 1,

.minor = 0,

};
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DRM/KMS Components: DRM device

static int atmel_hlcdc_dc_drm_probe(struct platform_device *pdev)

{

struct drm_device *ddev;

int ret;

ddev = drm_dev_alloc(&atmel_hlcdc_dc_driver, &pdev->dev);

if (!ddev)

return -ENOMEM;

ret = drm_dev_set_unique(ddev, dev_name(ddev->dev));

if (ret) {

drm_dev_unref(ddev);

return ret;

}

ret = drm_dev_register(ddev, 0);

if (ret) {

drm_dev_unref(ddev);

return ret;

}

return 0;

}
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DRM/KMS Components: Other concepts

I DPMS: Display Power Management Signaling
I Properties: transversal concept used to expose display pipeline

behaviors
I Can be attached to all the component we’ve seen so far
I Examples:

I Rotation is a plane property
I EDID (Unique display ID exposed by a monitor) is a connector

property
I ...

I Bridge: represent an external encoder accessible through a
bus (spi, i2c)

I Encoder slave: pretty much the same thing (still don’t get the
difference)

I FBDEV emulation

I Multiple CRTCs, Encoders and Connectors

I Other concepts I’m not aware of yet :-)
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DRM/KMS Sequence Diagram: Mode Setting
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KMS Driver: Development Tips

I Read the documentation:
https://www.kernel.org/doc/htmldocs/drm/

I Take a look at other drivers
I Choose a similar driver (in terms of capabilities)
I Check that the driver you are basing your work on is recent

and well maintained

I Check for new features: the DRM subsystem is constantly
evolving

I Use helper functions and structures as much as possible

I Start small/simple and add new features iteratively (e.g. only
one primary plane and one encoder/connector pair)

I Use simple user-space tools to test it like modetest
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KMS Userland Graphic Stacks

I Tried weston (standard wayland implementation) and Qt with
a KMS backend

I First thing to note: they’re not ready for KMS drivers without
OpenGL support (DRM_RENDER capabilities)!

I Wayland works (thanks to pixmam support) but does not
support planes and hardware cursors when OpenGL support is
disabled

I Qt only works with the fbdev backend
I WIP on the mesa stack to provide soft OpenGL when using a

KMS driver without OpenGL support
I But the window composition will most likely be done through

the soft OpenGL, which implies poor perfomances

I Not sure you can choose a specific plane when using a window
manager (e.g. stream video content on a plane which support
YUV format)
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Questions?

Boris Brezillon

boris.brezillon@free-electrons.com

Slides under CC-BY-SA 3.0
http://free-electrons.com/pub/conferences/2014/elce/brezillon-drm-kms/
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