
The Truth about
Docker Container Lifecycles

KEVIN MCGUIRE
AUGUST 17/2015

A story begins…

Servicification of New Relic

Service container life cycle

Long lived Short lived

VM

Theory
Docker is a lightweight VM

Let’s monitor it!

Well that was surprising

Apparent customer usage

Long lived Short lived

VM

Theory
Docker is a lightweight VM
Docker is a cloud compute container

Pets vs Cattle

Along came New Relic Synthetics…

•  User authored selenium scripts run in our data center
•  Each run in its own container for security isolation
•  Mostly run for under a minute

Along came New Relic Synthetics…

•  Test external availability and performance
•  User authored selenium scripts run in our data center
•  Each run in its own container for security isolation
•  Most run for under a minute

A lighter weight usage

Long lived Short lived

VM

Theory
Docker is a lightweight VM
Docker is a cloud compute container
Docker is a short lived compute engine

What the heck’s going on?

Long lived Short lived

VM

? ? ?

1: Hey we’re monitoring it!

2: We’re Data Nerds!

Data set analyzed

CUSTOMERS

Approx. 1000

TOTAL CONTAINERS

8+ million

AVERAGE 24 HR CONTAINERS

300,000+

100

10K

1M
3.7 M

333 days 83 days

100

10K

1M
3.7 M

Like VMs

100

10K

1M
3.7 M

Cloud-ish

100

10K

1M
3.7 M

Lightweight compute engine

3,741,000
46% under one hour

950,000
11% under one minute

27% under 5 minutes
(versus a VM?)

June versus now: 5x data, same shape

A surprising result

Long lived Short lived

VM

Why this matters
1.  Usage is evolving in (fascinating) unexpected ways

2.  Single technology that can span such wide usage is a game changer

3.  Monitoring tools need to fit the lifecycle

Takeaways
•  Same technology spans a huge usage scope

•  What explains all this?
•  Batch jobs?
•  “Microservices”?

•  The missing metric: computational work
•  There will be a lot more short lived anything

The evolution of computation as a service
•  Short startup time (orders mag.) allows very short lived computing

•  Containers are created
•  Do their work
•  Go away

•  Containers only exist, and only for as long, as they provide value.

Full stop.

Implications of computation as a service?
•  What does it mean to network them together?

•  What does it mean for orchestration of work?

•  What does it mean for CI? Does it increase agility?

•  What does it mean for provisioning, load balance, availability?

•  How do we know what they’re doing?
(And, what is “what”?)

Monitoring servers

Monitoring computation

Thank you

Kevin McGuire
kevin@newrelic.com
@KevinMcGUI

