
Liran Liss

ContainerCon 2015

Containing RDMA and High Performance Computing

© 2015 Mellanox Technologies 2

Agenda

 High Performance Computing (HPC) networking

 RDMA 101

 Containing RDMA

• Challenges

• Solution approach

 RDMA network namespace support

 RDMA controller

 Putting it all together

• RDMA: Infiniband + RoCE (RDMA over Converged Ethernet)

• Raw Ethernet: DPDK + user-level TCP

 Conclusions

© 2015 Mellanox Technologies 3

HPC Networking

 Modern Super-Computers are typically clusters
• Commodity servers

• Commodity OSes

 Efficient communication is key to scaling
• It’s a lot harder to do the same at less time than do

more at the same time

• Communication / compute ratio increases with
system size

 Traditional network stack challenges
• Per message / packet / byte overheads

• User-kernel crossings

• Memory copies

 RDMA eliminates these overheads
• 600ns application-to-application latencies

• 100Gbps throughput

© 2015 Mellanox Technologies 4

RDMA 101

 Move traditional OS tasks to HW
• Process isolation

• Reliable delivery and protocol processing
• Transport context

 User-level networking
• System calls used for

- Creating resources

- Setting up connections

- Registering memory

• Data path is done entirely from user-space
- Posting work requests

- Polling for completions

 Asynchronous IO
• Memory management delegated to applicaton
• Zero-copy IO for all operations

 Semantics
• Channel (sends and receives)
• RDMA (Write / Read / Atomics)

Send Queue

Send

WQE

Memory Space

Data to

Send

Recieve Queue

WQE

Memory Space

Receive

buffer

Send Queue

RDMA

Write

WQE

Memory Space

Source

buffer

Memory Space

Target

buffer

Completion Queue

CQE

Completion Queue

CQE

Completion Queue

CQE

© 2015 Mellanox Technologies 5

Containing RDMA

 Is HPC and virtualization a contradiction?

• Not if performance isn’t sacrificed

- MMU/IOMMU overheads

- Interrupt delivery

- Memory footprint

• HPC applications may benefit from

- Easy packaging of application dependencies

 Independent infrastructure and application layers

- Ease of deployment

 Multiple user environments

• HPC clouds are already happening

 Containers + RDMA: the best of both worlds

• Efficient isolation and agility of containers

• Performance of RDMA

Image

RH6.5

OFED-2.4

OpenMPI

Math libs

App

Lustre
Base

layers

App

layers

© 2015 Mellanox Technologies 6

Application

NIC

RDMA

resources

Challenge: Direct User Access to HW

 IO is initiated directly by the application

 Kernel not involved in the data path
• Cannot classify or tag packets

• Cannot modify packets

 Consequences
• Cannot apply net_cls

• Cannot apply net_prio

• Cannot reflect arbitrary Linux routing or bridging

 Solution approach
• Support interfaces that represent HW properties

- Standard (untagged) Ethernet interface

- VLAN interfaces

- macvlan interfaces

- IPoIB interface

• Apply traffic constraints during resource creation

- Addressing

- QoS (user-priority / Service Level)

eSwitch/Router

interface interface

Application

Kernel

RDMA

resources

Configuration

Datapath

© 2015 Mellanox Technologies 7

Challenge: Resource Rich

 Verbs API exposes Multiple objects

• QPs, CQs, SRQs, MRs, PDs, AHs…

• Backed by (finite) HW resources

• Accessed by a single FD

 Consequence

• Existing controllers/limits not granular enough

- Memory

- FD

- Device files

 Solution approach

• Introduce a new granular controller group

 librdmacm

libibverbs

Application

Device handle

Protection

domain

Queue

Pair
Queue

Pair

Protection

domain

Completion

queue
Completion

queue

Queue

Pair

Shared

Receive queue

Completion

channel

Completion

channel

rdma_id

rdma event

channel

F
D

F
D

F
D

F
D

HW

resource

SW

resource

Address

handle
Memory

region

© 2015 Mellanox Technologies 8

Challenge: RDMA Addressing

 Services are identified by ServiceIDs
• 64-bit namespace

• No well-known QP numbers

 RDMA addresses are different than TCP/IP
• Infiniband uses LIDs and GIDs

• RoCE (v2) uses UDP encapsulation

 IP CM
• Maps TCP/UDP port spaces into ServiceIDs

• Carries IP addresses in extended message data

• Implemented by librdmacm / CMA

 Consequence
• Standard network namespaces do not apply directly

to native RDMA addressing

 Solution approach

• Support network namespaces for RDMACM

connections

IB/RoCE

headers

CM:

ServiceID

LocalCommID

IP CM:

SPort

Ipver,SIP, DIP

IB/RoCE

headers

CM:

LocalCommID

RemoteCommID

IB/RoCE

headers

CM:

LocalCommID

RemoteCommID

REQ message

REP message

RTU message

Client Server

0 1 2 3 4 5 6 7

0x00 0x01
IP

prot
port

© 2015 Mellanox Technologies 9

RDMA Containment Principles

 Focus on application APIs

• Verbs / RDMACM

• Exclude management and low-level APIs

- E.g., umad, ucm

- Deny access using device controller

• Exclude kernel ULPs (e.g., iSER, SRP)

- Not directly exposed to applications

- Controlled by other means (blk_io)

- Subject for future work

 Simplicity and efficiency

• Containers may share the same RDMA device

• Leverage existing isolation infrastructure

- Native RDMA process isolation

- Network namespaces and cgroups

RDMA core layer

(ib_core, ib_cm, ib_cma)

ib_cm

ib_cma

srp

ib_ipoib

ib_ucma ib_uverbs

iser

SCSI

midlayer

TCP/IP

sockets

librdmacm

libibverbs

Application

ib_umad ib_ucm

rds

Driver

User-space driver
User

Kernel

© 2015 Mellanox Technologies 10

Namespace Observations

 Isolating Verbs resources is not worthwhile

• Only QPNs and RKeys are visible on the wire

• Both don’t have well-known names

- Applications don’t choose them

• Share device RDMA namespace among

multiple processes

- Scales to 10K’s of containers

 rdmacm maps nicely to network namespaces

• IP addresses stem from network interfaces

• Protocols and port numbers map to ServiceID

port-spaces

 Network namespace required for RoCE

L3L2 address resolution

• Connected QPs

• Address handles

• Support standard network namespaces

via Isolated RDMACM port-spaces

• QP and AH API calls should be

processed within a namespace context

• Associate RDMA IDs with namespaces

Conclusions

© 2015 Mellanox Technologies 11

Resource Namespace Association

 QP and AH namespaces

• Determined by the selected GID index during API calls

- Selects interface, namespace, and source IP

 RDMA IDs namespaces

• Determined by the process namespace upon creation

• Matched asynchronously with incoming requests

• Default to Host namespace for kernel threads

 Namespace determined by HW interfaces

• Physical port interfaces of PFs/VFs

• Multiple IPoIB child devices on same / different P_Key

• VLAN child devices

• macvlan child devices

© 2015 Mellanox Technologies 12

ib_cma

ServiceID Resolution

ib_cm

Lookup port in NS

Portspace

Lookup NS

Lookup NS

Match cm_id

by

<loc_comm_id,

rem_comm_id>

Get cm_id NS

Match netdev

by

<device, port,

VLAN/P_Key, GID/IP>

Get netdev NS

Is solicited?

NO YES
YES

CM packet

ib_core

Is CMA?

Lookup ServiceID

© 2015 Mellanox Technologies 13

RDMA cgroup

 Governs application resource utilization

• Per RDMA device

 Control resource usage

• Opened HCA contexts

• HCA resources

- CQs, PDs, QPs, SRQs, MRs, AHs

 Control spoofing and QoS

• Service Levels (SLs) and User Priorities (UPs)

• Partition keys

- List of allowed P_Key values

• Interfaces (RoCE)

- List of allowed GIDs (each represents an interface)

 Enforcement

• During system calls

- E.g., while creating QPs

• During policy changes

- Depends on resource type

• During network changes

- E.g., partition changes

© 2015 Mellanox Technologies 14

Putting it All Together

 Available today

• Infiniband and RoCE in “host” namespace

• Raw Ethernet queues (DPDK, user-space TCP)

- Requires CAP_NET_RAW

 ServiceID namespace support for IB completed

• Supports all IPoIB interfaces

• First patch-set accepted for Linux 4.3

- Multiplexes multiple RDMAIDs over a single ServiceID

 Coming up

• Complete upstream IB namespace integration

• RoCE namespaces

• RDMA cgroup controllers

• Runtime integration

yum install -y libibverbs-utils libibverbs-

devel libibverbs-devel-static libmlx4 libmlx5

ibutils libibcm libibcommon libibmad

libibumad

yum install -y rdma librdmacm-utils

librdmacm-devel librdmacm libibumad-devel

perftest

rdma_server

ip link add link ib0 name ib0.8001 type

 ipoib pkey 8001

pipework ib0 $CONTAINERID 10.1.0.1/16

./docker run

 --device=/dev/infiniband/uverbs0

 --device=/dev/infiniband/rdma_cm

 --ulimit memlock=-1

 -t -i centos /bin/bash

© 2015 Mellanox Technologies 15

Linux

Putting it All Together (cont.)

IB HCA

IB core

ib_0

0x8001

10.2.0.1

ib_1

0x8001

10.2.0.2

ib_2

0x8002

10.3.0.1

RoCE HCA

eth0

11.1.0.1

eth0.100

10.4.0.1

eth0.101

10.5.0.1

App A

listen rdma_id:

TCP port-space 2000

Net NS: 1

cpu: 10%

QPs: 10

CQs: 10

Net NS: 2

cpu: 20%

QPs: 50

CQs: 50

App B

listen rdma_id:

TCP port-space 2000

Net NS: 3

cpu: 30%

QPs: 100

CQs: 100

App C

DPDK

© 2015 Mellanox Technologies 16

Conclusions

 The intrinsic efficiency of containers make them an attractive virtualization and deployment solution

for high-performance applications

• E.g., HPC clouds, Supercomputers

 Infiniband, RoCE, DPDK, and user-space TCP/IP supported today in “host” namespace

• SRIOV not required (!)

• Scale to any number of containers

 RDMA namespace support allows running multiple rdmacm applications in isolation

• physical interface assignment, bridging, and “pod” network models

• Zero-overhead: forwarding is done by the HW embedded switch

 RDMA controllers shall prevent contained applications from monopolizing RDMA resources

Thank You

