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Agenda 

 High Performance Computing (HPC) networking 

 RDMA 101 

 Containing RDMA 

• Challenges 

• Solution approach 

 RDMA network namespace support 

 RDMA controller 

 Putting it all together 

• RDMA: Infiniband + RoCE (RDMA over Converged Ethernet) 

• Raw Ethernet: DPDK + user-level TCP 

 Conclusions 
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HPC Networking 

 Modern Super-Computers are typically clusters 
• Commodity servers 

• Commodity OSes 

 

 Efficient communication is key to scaling 
• It’s a lot harder to do the same at less time than do 

more at the same time 

• Communication / compute ratio increases with 
system size 

 

 Traditional network stack challenges 
• Per message / packet / byte overheads 

• User-kernel crossings 

• Memory copies 

 

 RDMA eliminates these overheads 
• 600ns application-to-application latencies 

• 100Gbps throughput 
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RDMA 101 

 Move traditional OS tasks to HW 
• Process isolation 

• Reliable delivery and protocol processing 
• Transport context 

 

 User-level networking 
• System calls used for 

- Creating resources 

- Setting up connections 

- Registering memory 

• Data path is done entirely from user-space 
- Posting work requests 

- Polling for completions 

 

 Asynchronous IO 
• Memory management delegated to applicaton 
• Zero-copy IO for all operations 

 

 Semantics 
• Channel (sends and receives) 
• RDMA (Write / Read / Atomics) 
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Containing RDMA 

 Is HPC and virtualization a contradiction? 

• Not if performance isn’t sacrificed 

- MMU/IOMMU overheads 

- Interrupt delivery 

- Memory footprint 

 

• HPC applications may benefit from 

- Easy packaging of application dependencies 

 Independent infrastructure and application layers 

- Ease of deployment 

 Multiple user environments 

 

• HPC clouds are already happening 

 

 Containers + RDMA: the best of both worlds 

• Efficient isolation and agility of containers 

• Performance of RDMA 
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Challenge: Direct User Access to HW 

 IO is initiated directly by the application 

 Kernel not involved in the data path 
• Cannot classify or tag packets 

• Cannot modify packets 

 

 Consequences 
• Cannot apply net_cls 

• Cannot apply net_prio 

• Cannot reflect arbitrary Linux routing or bridging 

 

 Solution approach 
• Support interfaces that represent HW properties 

- Standard (untagged) Ethernet interface 

- VLAN interfaces 

- macvlan interfaces 

- IPoIB interface 

• Apply traffic constraints during resource creation 

- Addressing 

- QoS (user-priority / Service Level) 
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Challenge: Resource Rich 

 Verbs API exposes Multiple objects 

• QPs, CQs, SRQs, MRs, PDs, AHs… 

• Backed by (finite) HW resources 

• Accessed by a single FD 

 

 Consequence 

• Existing controllers/limits not granular enough 

- Memory 

- FD 

- Device files 

 

 Solution approach 

• Introduce a new granular controller group 
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Challenge: RDMA Addressing 

 Services are identified by ServiceIDs 
• 64-bit namespace 

• No well-known QP numbers 

 

 RDMA addresses are different than TCP/IP 
• Infiniband uses LIDs and GIDs 

• RoCE (v2) uses UDP encapsulation 

 

 IP CM 
• Maps TCP/UDP port spaces into ServiceIDs 

 

 

 

• Carries IP addresses in extended message data 

• Implemented by librdmacm / CMA 

 

 Consequence 
• Standard network namespaces do not apply directly 

to native RDMA addressing 

 

 Solution approach 

• Support network namespaces for RDMACM 

connections 
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RDMA Containment Principles 

 Focus on application APIs 

• Verbs / RDMACM 

• Exclude management and low-level APIs 

- E.g., umad, ucm 

- Deny access using device controller 

• Exclude kernel ULPs (e.g., iSER, SRP) 

- Not directly exposed to applications 

- Controlled by other means (blk_io) 

- Subject for future work 

 

 Simplicity and efficiency 

• Containers may share the same RDMA device 

• Leverage existing isolation infrastructure 

- Native RDMA process isolation 

- Network namespaces and cgroups 
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Namespace Observations 

 Isolating Verbs resources is not worthwhile 

• Only QPNs and RKeys are visible on the wire 

• Both don’t have well-known names 

- Applications don’t choose them 

• Share device RDMA namespace among 

multiple processes 

- Scales to 10K’s of containers 

 

 rdmacm maps nicely to network namespaces 

• IP addresses stem from network interfaces 

• Protocols and port numbers map to ServiceID 

port-spaces 

 

 Network namespace required for RoCE 

L3L2 address resolution 

• Connected QPs 

• Address handles 

 

• Support standard network namespaces 

via Isolated RDMACM port-spaces 

 

• QP and AH API calls should be 

processed within a namespace context 

 

• Associate RDMA IDs with namespaces 

Conclusions 
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Resource Namespace Association 

 QP and AH namespaces 

• Determined by the selected GID index during API calls 

- Selects interface, namespace, and source IP 

 

 RDMA IDs namespaces 

• Determined by the process namespace upon creation 

• Matched asynchronously with incoming requests 

• Default to Host namespace for kernel threads 

 

 Namespace determined by HW interfaces 

• Physical port interfaces of PFs/VFs 

• Multiple IPoIB child devices on same / different P_Key 

• VLAN child devices 

• macvlan child devices 
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RDMA cgroup 

 Governs application resource utilization 

• Per RDMA device 

 

 Control resource usage 

• Opened HCA contexts 

• HCA resources 

- CQs, PDs, QPs, SRQs, MRs, AHs 

 

 Control spoofing and QoS 

• Service Levels (SLs) and User Priorities (UPs) 

• Partition keys 

- List of allowed P_Key values 

• Interfaces (RoCE) 

- List of allowed GIDs (each represents an interface) 

 Enforcement 

• During system calls 

- E.g., while creating QPs 

• During policy changes 

- Depends on resource type 

• During network changes 

- E.g., partition changes 
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Putting it All Together 

 Available today 

• Infiniband and RoCE in “host” namespace 

• Raw Ethernet queues (DPDK, user-space TCP) 

- Requires CAP_NET_RAW 

 

 ServiceID namespace support for IB completed 

• Supports all IPoIB interfaces 

• First patch-set accepted for Linux 4.3 

- Multiplexes multiple RDMAIDs over a single ServiceID 

 

 Coming up 

• Complete upstream IB namespace integration 

• RoCE namespaces 

• RDMA cgroup controllers 

• Runtime integration 

# yum install -y libibverbs-utils libibverbs-

devel libibverbs-devel-static libmlx4 libmlx5 

ibutils libibcm libibcommon libibmad 

libibumad 

 

# yum install -y rdma  librdmacm-utils 

librdmacm-devel librdmacm libibumad-devel 

perftest 

 

# rdma_server 

# ip link add link ib0 name ib0.8001 type 

 ipoib pkey 8001 

 

# pipework ib0 $CONTAINERID 10.1.0.1/16 

# ./docker run 

 --device=/dev/infiniband/uverbs0 

 --device=/dev/infiniband/rdma_cm 

 --ulimit memlock=-1 

 -t -i centos /bin/bash 
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Linux 

Putting it All Together (cont.) 
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Conclusions 

 The intrinsic efficiency of containers make them an attractive virtualization and deployment solution 

for high-performance applications 

• E.g., HPC clouds, Supercomputers 

 

 Infiniband, RoCE, DPDK, and user-space TCP/IP supported today in “host” namespace 

• SRIOV not required (!) 

• Scale to any number of containers 

 

 RDMA namespace support allows running multiple rdmacm applications in isolation 

• physical interface assignment, bridging, and “pod” network models 

• Zero-overhead: forwarding is done by the HW embedded switch 

 

 RDMA controllers shall prevent contained applications from monopolizing RDMA resources 



Thank You 


