
Dynamic Audio Power Management

Lars-Peter Clausen – Analog Devices

What is DAPM?

“Oh, it's just a graph walk, ...”

Why DAPM?

Anatomy of a modern sound card

Why DAPM?

● Modern sound cards consist of many
independent discrete components

● Each component has functional units that can
be powered independently

● Audio routing matrices get complex (1000+
functional units)

Why DAPM?

● Battery powered devices require lowest power
mode

● Managing dependencies by hand is tedious
and error prone

What is DAPM?

● Models data flow and power dependencies in
a directed graph

● Nodes represent functional units (called
widgets)

● Edges represent connections between
functional units (called routes or paths)

What is DAPM?

Simple DAPM graph

What are the benefits of DAPM?

● Provides a common API for audio component
interoperability

● Implements efficient power management for
individual components

How does DAPM work?

● CODEC or component driver provides
description of it's subsection of the graph
– Special widgets are used for inputs and outputs

● Board driver describes connections between
components as well as the audio fabric
– Fabric includes speakers, microphones, headphone

jacks, etc.

– Information might be provided by devicetree or
ACPI

How does DAPM work?

● Each widget has a type
– Speaker, Microphone, Amplifier, DAC, ADC,

internal supply, external supply, headphone output,
line-in input, line-out output, audio interface, audio
interface link, mixer, mux, input pin, output pin

● Type defines how the widget behaves in the
graph

How does DAPM work?

● Detects active data paths
– Dynamically manages the power state of

functional units on those paths

– Also manages their power dependencies

● Two phases
– Determine target power state

– Power sequencing

Phase 1
Determining Power State

Categories of Widgets

● For finding out the power state DAPM
differentiates between three different
categories of widgets
– Endpoint widgets

– Pass-through widgets

– Supply widgets

Endpoint Widgets

● Consume or produce a signal from/into the
pipeline

● Speaker, Microphone, Tone-generator, PCM
device

Endpoint Widgets

● Endpoints can be active or inactive
– This information is not available for all endpoints

● Endpoints can be marked as disconnected
– SOC_DAPM_PIN_SWITCH()

Pass-through Widgets

● Only powered up when on a active path
between two endpoints

● Amplifier, Mixer, Audio-Interface

Pass-through Widgets

● Static routing
– All inputs contribute to all output signals

● Dynamic routing
– Connections between inputs and output depend

on state

Supply Widgets

● Model resource dependencies rather than
data flow relationships

● Powered up when any of the consumers is
powered up

● Clock, regulator, shared enable bits

Determining Power State

● For each widget DAPM records the number of
paths to an active output and number of paths
to an active input

● If the number of both connected active inputs
and connected active outputs is one or more
the widget is assumed powered up.

Determining Power State

Determining Power State

Determining Power State

● Source endpoint widgets are assumed
powered up if they are active and there is a
path to a active sink endpoint widget

● Sink endpoint widgets are assumed powered
up if they are active and there is a path to a
active source endpoint widget

Determining Power State

Determining Power State

● Supply widgets are assumed powered up if
there is a path to an powered-up widget

Determining Power State

Phase 2
Power Sequencing

Power Sequencing

● Once the new state has been determined
DAPM makes a diff to the current state and
schedules the required changes

● Changes are performed in a certain order
depending on widget type
– Minimizes audio click/pop noises

Powering Sequene

1.Power-down all newly disabled widgets

2.Perform routing changes (if any)

3.Power-up all newly enabled widgets

Sequencing Order

● Each widget type has a sequence ID
– Widgets of similar type have the same sequence

number

● Power-up sequence order is not the reverse
power-down sequence order

● Each widget can have a sub-sequence ID
– For ordering within the same sequence

Sequencing Order

● Power updates are order by
– Widget type sequence ID

– Widget sub-sequence ID

– IO register access

– DAPM context (device)

Applying Power Changes

● DAPM has the concept of register mapped IO
built-in
– Widget specifies register offset, a mask and a

value for the on state and off state

● Per widget callbacks are also available
– For external supplies

– For widgets internal widgets that require a more
complex on/off register write sequence

Register Update Coalescing

● Multiple updates to the same register in the
same sub-sequence are coalesced into a
single update

● Reduces the number of IO operations
– Important for slow buses like I2C

Dynamic Graph Changes

Dynamic Graph Changes

● DAPM has support for dynamic graph
changes

● After each change the power state of the
graph is re-evaluated

Dynamic Graph Changes

● Enable/disable (add/remove) a edge in the
graph
– Dynamic routing changes

● Enable/disable a endpoint node in the graph
● Starting/Stopping a playback or capture stream
● Hot-plug/-unplug of components

– Poorly supported at the moment

Dynamic Routing Changes

● DAPM has built-in support for common types
of dynamic routing changes
– Mixers, Mux, Demux

● Driver can implement their own dynamic
routing when necessary
– Typically used when different operating modes

require different routing

Mixer

● Has multiple input paths that
can be independently
enabled/disabled

● Output is the sum of all inputs
● Exported to userspace using

multiple boolean ALSA controls

Mux/Demux

● Mux: Routes one of multiple inputs
to a single output

● Demux: Routes one input to exactly
one of multiple outputs

● Exported to userspace using a
single enum control

Shared Mixers/Muxes

● Allow to model independent data
flow paths with shared control
path
– E.g. left and right path of a stereo

signal

● In the driver pass the same
struct snd_kcontrol_new to all
controlled mixers/muxes

Auto-mute Mixers

● Automatically mutes/disables the input to a
mixer source is powered down

● Useful when the source outputs a invalid or
undefined signal when powered down

Auto-mute Mixers

● When the source stops the switch is
automatically opened

● Switch state is still reported as closed to
userspace applications

Auto-mute Mixers

● When the source resumes the switch is set
back to the userspace provided setting

Auto-disable Mux

● When the selected source is powered down
the mux switches to a special off state

● Useful when the source output is undefined or
invalid when powered off

● Useful when the mux has no dedicated power-
down control

Future

Future - DXPM

● Using DAPM not only for audio
– E.g. video processing pipelines

● Allows to model complex power relationships
● Doesn't suffer problems of classical power

runtime power management
– E.g. DAPM can handle cyclic dependencies

– Finer grained resolution

● DAPM core algorithm is not audio specific

Q/A

Thanks

Bonus Slides

Micbias Widget

● Conceptually broken
● Don't use them
● Use supply widgets

instead

Jack Detection

● DAPM has jack detection integration
● Automatically disables endpoint when nothing

is connected

Suspend/Resume

● During system suspend all endpoints are
marked as disconnected
– Unless the are marked to ignore suspend

Runtime Suspend/Resume

● DAPM integrates nicely with runtime PM
● Runtime PM is enabled when at least one

widget is enabled
● Runtime PM is disabled when all widgets are

disabled
● Don't access the same hardware state from

DAPM and runtime PM

Pre/Post widgets

● Pre/Post widgets are special virtual widgets
● Callbacks are executed each time the DAPM

sequencing runs
● Don't need to be connected anywhere

