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What the heck are discards? - A 
very brief history of block I/O

 The traditional block interface simply was 
reads and writes of blocks.

 That’s nice and good for disks.
– Well sorta.. 

 But Flash SSDs can not just overwrite 
existing data
– So they must write out of place
– And manage a block mapping

 Also enter under provisioned Arrays into 
the game



What the heck are discards? - A 
very brief history of block I/O

 We need a way to tell the device blocks 
aren’t in use anymore..
– Linux calls this a discard
– Every storage protocol has a different 

name for it



Different implementations of the 
discard concept: ATA TRIM

 ATA supports the TRIM operation in the 
DSM command
– Supports up to 64 ranges
– 16 bits worth of blocks per range
– The DSM command is not queued

 Newer versions support queued TRIM
– I’ve not actually seen a working 

implementation in the field



Different implementations of the 
discard concept: SCSI UNMAP

 SBC supports the UNMAP command
– Supports an implementation specific number 

of ranges
– 32 bits worth of blocks per range
– All SCSI commands are queued



Different implementations of the 
discard concept: SCSI WRITE SAME

 SBC supports the WRITE SAME 10/16/32 
commands to write a LBA sized buffer to 
many LBAs
– If the UNMAP bit is set WRITE SAME ask the 

device to unmap the blocks covered
– Buffer must be all zeros for the UNMAP bit to 

work.
– Future reads from the LBAs must return all 

zeros 



Different implementations of the 
discard concept: NVMe Deallocate

 NVMe supports the Deallocate operation in 
the DSM command
– Supports up to 256 ranges, 32 bits worth of 

blocks per range
– All NVMe commands are queued



When does the OS issue a discard?

1.Explicit through an ioctl:
• e.g. mkfs time - trivial

2.Walk the free space information and 
discard everything that isn’t used:
•  (FITRIM ioctl, or horrible hacks in hdparm) 

3.Whenever the file system actually frees 
previously space:
• online discard (mount -o discard)



History of discard in Linux

 Support for REQ_DISCARD added in Linux 
2.6.28 (2008):
– Intended as a pure hint
– Discards are issued asynchronously as 

“barriers”
– Only single ranges supported
– No payload in the bio / request
– Exposed as BLKDISCARD ioctl
– fat and ext4 support limited online discard
– Implemented by MTD (raw flash)



History of discard in Linux (2)

 SCSI and ATA support added in Linux 
2.6.33 (2009):
– libata parses a SCSI WRITE SAME and 

translates it to an ATA TRIM
– new discard_zeroes_data, discard_granularity, 

discard_alignment flags
– Discard now carries a single page payload that 

the driver can use for its purposes

 Linux 2.6.36 (2010) adds support for 
secure erase into the discard code, and 
leaves payload allocation to the driver



History of discard in Linux (3)

 Linux 2.6.37 (2011) removes the barrier 
semantics and makes discard synchronous

 Linux 2.6.38 (2011) adds the FITRIM ioctl 
to discard all free space in a file systems

 Each release  more file systems start 
issuing online discards



Online discard in XFS

 How do file systems free blocks?
– Needs to be atomic vs deleting them from the 

extent list

→ Atomic transaction that logs the intent to 
free, actual freeing delayed 

– Transactions might be asynchronous

→ Must only reuse or discard blocks 
once actually committed 



The busy extent list

 Tracks all extents that have their deletion intent 
committed but the transaction not safely on disk 
yet
– Red / Black tree per allocation group
– Allocations try to skip busy extents when 

possible
– If not the transaction freeing them has to be 

forcibly written to disk



The busy extent list - discards

 Reuses the busy extent list:
– Once the transaction committing the deletion 

is on disk, issue a discard for all deleted 
extents

– Extents stay on the busy extent list
– Only get removed once the discard completes
– Initially discards were issued synchronously

→ blocks the log write completion thread
 As part of discard support the busy extent list was 

improved:
– Scalable and bulletproof (at least we thought..)



Asynchronous discards in the file 
systems

 Do not wait for the discards from the log write 
completion handler
– Instead attach a completion handler that 

removes them from the busy extent list
– Forces us to wait for discards in various places, 

including the near ENOSPC allocator code
– Ended up finding lots of bugs in this code



Recent discard improvements

 Linux 4.7 adds usable asynchronous 
discards supports
– Allows for attaching a completion callback

 Linux 4.10 improves the way they 
payloads for TRIM / UNMAP / WRITE 
SAME are allocated
– Doesn’t pretend to be the normal I/O path
– Special drivers overrides the payload path now



Ranged TRIM support

 Linux so far only allowed a single discard range
 Linux block I/O requests generally are LBA 

-contiguous, although multiple bios can be 
merged into one
– Ranged discard uses this linkage to allow 

linking non-contiguous bios for discard if the 
driver allows it

– Driver then walks the list of bios and 
generates the payload

– Multiple ranges only happen when issued 
asynchronously

 Linux 4.11 supports ranged deallocated for NVMe 



ATA ranged TRIM support

 Libata translated SCSI into ATA commands
 For discards it advertises WRITE SAME 

support and builds TRIM commands
– WRITE SAME only supports a single range
– TRIM supports multiple small ranges
– In SCSI UNMAP would support multiple 

ranges, but the semantics don’t match very 
well

– Rewriting the payload in place corrupts user 
data for SCSI pass through



ATA ranged TRIM support (2)

 Maybe we should get out the command 
rewriting business?
– Add a new Vendor Specific SCSI command with 

the ATA TRIM payload
– Greatly simplifies the libata code
– Discard can now use the zero page as WRITE 

SAME payload
 Submitted for Linux 4.12, not merged yet
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NVMe enterprise SSD (Vendor B)
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SATA SSD (non-queued TRIM)
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(Ab)using discard for zeroes

 WRITE SAME guarantees that future reads 
return all zeros.
– Wouldn’t it be nice to use that for zeroing?

 Keyed off the discard_zeros_data flag
– Works perfect for WRITE SAME
– But now discard isn’t just a hint any more
– Failure reporting becomes important now, e.g. 

for too small or unaligned requests



More Zeroing offload

 Linux 3.7 (2012) adds support for explicit 
WRITE SAME operations
– can be used for zeroing without the UNMAP bit

 Linux 4.10 (2017) adds an explicit zeroing 
operation (REQ_OP_WRITE_ZEROES)
– No payload (same as discard)
– Can be implemented directly (NVMe)
– Or by adding a payload (e.g. SCSI)



Questions?
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