
2014 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Improving Block Discard Support
throughout the Linux Storage

Stack

Christoph Hellwig

What the heck are discards? - A
very brief history of block I/O

 The traditional block interface simply was
reads and writes of blocks.

 That’s nice and good for disks.
– Well sorta..

 But Flash SSDs can not just overwrite
existing data
– So they must write out of place
– And manage a block mapping

 Also enter under provisioned Arrays into
the game

What the heck are discards? - A
very brief history of block I/O

 We need a way to tell the device blocks
aren’t in use anymore..
– Linux calls this a discard
– Every storage protocol has a different

name for it

Different implementations of the
discard concept: ATA TRIM

 ATA supports the TRIM operation in the
DSM command
– Supports up to 64 ranges
– 16 bits worth of blocks per range
– The DSM command is not queued

 Newer versions support queued TRIM
– I’ve not actually seen a working

implementation in the field

Different implementations of the
discard concept: SCSI UNMAP

 SBC supports the UNMAP command
– Supports an implementation specific number

of ranges
– 32 bits worth of blocks per range
– All SCSI commands are queued

Different implementations of the
discard concept: SCSI WRITE SAME

 SBC supports the WRITE SAME 10/16/32
commands to write a LBA sized buffer to
many LBAs
– If the UNMAP bit is set WRITE SAME ask the

device to unmap the blocks covered
– Buffer must be all zeros for the UNMAP bit to

work.
– Future reads from the LBAs must return all

zeros

Different implementations of the
discard concept: NVMe Deallocate

 NVMe supports the Deallocate operation in
the DSM command
– Supports up to 256 ranges, 32 bits worth of

blocks per range
– All NVMe commands are queued

When does the OS issue a discard?

1.Explicit through an ioctl:
• e.g. mkfs time - trivial

2.Walk the free space information and
discard everything that isn’t used:
• (FITRIM ioctl, or horrible hacks in hdparm)

3.Whenever the file system actually frees
previously space:
• online discard (mount -o discard)

History of discard in Linux

 Support for REQ_DISCARD added in Linux
2.6.28 (2008):
– Intended as a pure hint
– Discards are issued asynchronously as

“barriers”
– Only single ranges supported
– No payload in the bio / request
– Exposed as BLKDISCARD ioctl
– fat and ext4 support limited online discard
– Implemented by MTD (raw flash)

History of discard in Linux (2)

 SCSI and ATA support added in Linux
2.6.33 (2009):
– libata parses a SCSI WRITE SAME and

translates it to an ATA TRIM
– new discard_zeroes_data, discard_granularity,

discard_alignment flags
– Discard now carries a single page payload that

the driver can use for its purposes

 Linux 2.6.36 (2010) adds support for
secure erase into the discard code, and
leaves payload allocation to the driver

History of discard in Linux (3)

 Linux 2.6.37 (2011) removes the barrier
semantics and makes discard synchronous

 Linux 2.6.38 (2011) adds the FITRIM ioctl
to discard all free space in a file systems

 Each release more file systems start
issuing online discards

Online discard in XFS

 How do file systems free blocks?
– Needs to be atomic vs deleting them from the

extent list

→ Atomic transaction that logs the intent to
free, actual freeing delayed

– Transactions might be asynchronous

→ Must only reuse or discard blocks
once actually committed

The busy extent list

 Tracks all extents that have their deletion intent
committed but the transaction not safely on disk
yet
– Red / Black tree per allocation group
– Allocations try to skip busy extents when

possible
– If not the transaction freeing them has to be

forcibly written to disk

The busy extent list - discards

 Reuses the busy extent list:
– Once the transaction committing the deletion

is on disk, issue a discard for all deleted
extents

– Extents stay on the busy extent list
– Only get removed once the discard completes
– Initially discards were issued synchronously

→ blocks the log write completion thread
 As part of discard support the busy extent list was

improved:
– Scalable and bulletproof (at least we thought..)

Asynchronous discards in the file
systems

 Do not wait for the discards from the log write
completion handler
– Instead attach a completion handler that

removes them from the busy extent list
– Forces us to wait for discards in various places,

including the near ENOSPC allocator code
– Ended up finding lots of bugs in this code

Recent discard improvements

 Linux 4.7 adds usable asynchronous
discards supports
– Allows for attaching a completion callback

 Linux 4.10 improves the way they
payloads for TRIM / UNMAP / WRITE
SAME are allocated
– Doesn’t pretend to be the normal I/O path
– Special drivers overrides the payload path now

Ranged TRIM support

 Linux so far only allowed a single discard range
 Linux block I/O requests generally are LBA

-contiguous, although multiple bios can be
merged into one
– Ranged discard uses this linkage to allow

linking non-contiguous bios for discard if the
driver allows it

– Driver then walks the list of bios and
generates the payload

– Multiple ranges only happen when issued
asynchronously

 Linux 4.11 supports ranged deallocated for NVMe

ATA ranged TRIM support

 Libata translated SCSI into ATA commands
 For discards it advertises WRITE SAME

support and builds TRIM commands
– WRITE SAME only supports a single range
– TRIM supports multiple small ranges
– In SCSI UNMAP would support multiple

ranges, but the semantics don’t match very
well

– Rewriting the payload in place corrupts user
data for SCSI pass through

ATA ranged TRIM support (2)

 Maybe we should get out the command
rewriting business?
– Add a new Vendor Specific SCSI command with

the ATA TRIM payload
– Greatly simplifies the libata code
– Discard can now use the zero page as WRITE

SAME payload
 Submitted for Linux 4.12, not merged yet

NVMe enterprise SSD (Vendor A)

4.10, no discard 4.10 discard 4.11 no discard 4.11 discard
0

5

10

15

20

25

rm -rf + sync (in seconds)

Title

NVMe enterprise SSD (Vendor B)

4.10, no discard 4.10 discard 4.11 no discard 4.11 discard
0

5

10

15

20

25

30

rm -rf + sync (in seconds)

Title

SATA SSD (non-queued TRIM)

4.10, no discard 4.10 discard 4.11+ no discard 4.11+ discard
0

200

400

600

800

1000

1200

1400

1600

rm -rf + sync (in seconds)

Title

(Ab)using discard for zeroes

 WRITE SAME guarantees that future reads
return all zeros.
– Wouldn’t it be nice to use that for zeroing?

 Keyed off the discard_zeros_data flag
– Works perfect for WRITE SAME
– But now discard isn’t just a hint any more
– Failure reporting becomes important now, e.g.

for too small or unaligned requests

More Zeroing offload

 Linux 3.7 (2012) adds support for explicit
WRITE SAME operations
– can be used for zeroing without the UNMAP bit

 Linux 4.10 (2017) adds an explicit zeroing
operation (REQ_OP_WRITE_ZEROES)
– No payload (same as discard)
– Can be implemented directly (NVMe)
– Or by adding a payload (e.g. SCSI)

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

