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The need for updates



More powerful devices, more complex software

Embedded software now demands the full lifecycle support
we’ve been giving to web, cloud, and mobile.



Importance of updates
● Recalling products costs money

● Higher exposure to security exploits

● Longer release cycles
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Importance of updates



We’ve been there
We’ve been supporting a network with hundreds of screens in 5 countries, for two years.

We’ve had to go out on weekends, in the snow, with drills and USB sticks, upgrading software.

We spent a lot of resources on infrastructure that had little to do with our specific application.



Updates are difficult
● Poor connectivity
● Intermittent power
● Devices can be anywhere
● Devices could be in the middle of a critical operation
● A failed updated is a bricked device



Various update techniques
● Image based
● Package based
● Containers



Our solution



On-device software architecture

● All containers update safely and reversibly. 
Our own agent (Supervisor) runs in its own 
container 

● Layers shared between containers are 
stored only once

● Docker and Yocto userspace update using 
conventional methods

● All software projects we depend on are 
under open source licenses

The Vision: 100% updateable
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Yocto layer architecture

poky (yocto) meta-openembedded
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● Green/Blue method
● Has been discussed in Yocto mailing list
● Used by

○ CoreOS
○ ChromiumOS
○ Ubuntu Snappy
○ Probably others too

Host OS updates



Typical partition layout

root Data
Linux and 

Bootloader
Inactive



Atomic updates
● Immutable filesystem images

● Image as unit of deployment



Host OS updates
OS v1 Data

Linux and 
Bootloader

Inactive

● Initial device state

● Bootloader points to first root partition



Host OS updates
OS v1 Data

Linux and 
Bootloader

Inactive

OS v2

● Version 2 of the OS is downloaded into the inactive partition
● This operation can be interrupted without issues
● At the end, we can verify integrity and sync to disk



Host OS updates
OS v1 Data

Linux and 
Bootloader

OS v2

● Copy bootfiles from the OS image to boot partition
○ Kernel
○ DTBs
○ Initrd
○ etc.

● Do it in a atomic fashion
○ Write tmp file
○ Sync to disk
○ Rename to destination
○ Sync again



Host OS updates
OS v1 Data

Linux and 
Bootloader

OS v2

● Flip flag in bootloader to point to the new OS image and to the new OS kernel

● Reboot



Host OS updates
Inactive Data

Linux and 
Bootloader

OS v2

● Final device state after reboot



● With the help of hardware watchdogs
● With the help of bootloader logic
● The new version marks itself as stable after running 

self-test

Failsafe updates



● We use Docker
○ Originally ported Docker to ARM

● No reboot required
○ Move fast, brick nothing

● Efficient in bandwidth through layer sharing
● Efficient in disk IO through layer sharing

○ But we can do better with binary diffs

Container updates



● We can build update strategies depending on 
requirements

● Can achieve true downtime updates

Container updates



Update strategies
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Strategy 1: Download then Kill (default)



Strategy 2: Hand Over
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Drone demo



● If you squint, containers look a lot like host OS images 
and vice versa

Can we unify? 

We think yes. Come to our booth to talk about it :)

Food for thought



● Resin OS Github Organisation
○ https://github.com/resin-os

● Resin device supervisor
○ https://github.com/resin-io/resin-supervisor

● Gitter
○ https://gitter.im/resin-io/chat

Open source

https://github.com/resin-os
https://github.com/resin-os
https://github.com/resin-io/resin-supervisor
https://github.com/resin-io/resin-supervisor
https://gitter.im/resin-io/chat
https://gitter.im/resin-io/chat


Get in touch: Petros Angelatos // petrosagg@resin.io // @petrosagg

Questions?

mailto:petrosagg@resin.io

