
Bringing DevOps to Devices
Modern Update Approaches for
Embedded Linux

Petros Angelatos
April 2016

About me
● Petros Angelatos
● CTO & Founder of resin.io

 @petrosagg

● The need for updates
● Update techniques
● Our solution

○ Device software architecture
○ Yocto architecture
○ Host OS updates
○ Application updates

● Drone demo
● Questions

Agenda

The need for updates

More powerful devices, more complex software

Embedded software now demands the full lifecycle support
we’ve been giving to web, cloud, and mobile.

Importance of updates
● Recalling products costs money

● Higher exposure to security exploits

● Longer release cycles

Importance of updates

Importance of updates

Importance of updates

Importance of updates

We’ve been there
We’ve been supporting a network with hundreds of screens in 5 countries, for two years.

We’ve had to go out on weekends, in the snow, with drills and USB sticks, upgrading software.

We spent a lot of resources on infrastructure that had little to do with our specific application.

Updates are difficult
● Poor connectivity
● Intermittent power
● Devices can be anywhere
● Devices could be in the middle of a critical operation
● A failed updated is a bricked device

Various update techniques
● Image based
● Package based
● Containers

Our solution

On-device software architecture

● All containers update safely and reversibly.
Our own agent (Supervisor) runs in its own
container

● Layers shared between containers are
stored only once

● Docker and Yocto userspace update using
conventional methods

● All software projects we depend on are
under open source licenses

The Vision: 100% updateable

Userspace

Language
Packages

Language
Runtime

OS
packages

Base
Image

User
Application

Language
Packages

Language
Runtime

OS packages

Base Image

add-on
functionality
containers

(future)

Container Engine (Docker)

Linux Kernel + Kernel Modules

RESIN.IO
CONTAINER

APPLICATION
CONTAINER

EXTENSION
CONTAINER(S)

Resin
Agent

Yocto layer architecture

poky (yocto) meta-openembedded

meta-resin

BSP BSP BSP BSP

meta-resin-common

Jethro overlayer Fido overlayer Daisy overlayer

BSP BSP BSP BSP BSP

● Green/Blue method
● Has been discussed in Yocto mailing list
● Used by

○ CoreOS
○ ChromiumOS
○ Ubuntu Snappy
○ Probably others too

Host OS updates

Typical partition layout

root Data
Linux and

Bootloader
Inactive

Atomic updates
● Immutable filesystem images

● Image as unit of deployment

Host OS updates
OS v1 Data

Linux and
Bootloader

Inactive

● Initial device state

● Bootloader points to first root partition

Host OS updates
OS v1 Data

Linux and
Bootloader

Inactive

OS v2

● Version 2 of the OS is downloaded into the inactive partition
● This operation can be interrupted without issues
● At the end, we can verify integrity and sync to disk

Host OS updates
OS v1 Data

Linux and
Bootloader

OS v2

● Copy bootfiles from the OS image to boot partition
○ Kernel
○ DTBs
○ Initrd
○ etc.

● Do it in a atomic fashion
○ Write tmp file
○ Sync to disk
○ Rename to destination
○ Sync again

Host OS updates
OS v1 Data

Linux and
Bootloader

OS v2

● Flip flag in bootloader to point to the new OS image and to the new OS kernel

● Reboot

Host OS updates
Inactive Data

Linux and
Bootloader

OS v2

● Final device state after reboot

● With the help of hardware watchdogs
● With the help of bootloader logic
● The new version marks itself as stable after running

self-test

Failsafe updates

● We use Docker
○ Originally ported Docker to ARM

● No reboot required
○ Move fast, brick nothing

● Efficient in bandwidth through layer sharing
● Efficient in disk IO through layer sharing

○ But we can do better with binary diffs

Container updates

● We can build update strategies depending on
requirements

● Can achieve true downtime updates

Container updates

Update strategies

Supervisor

Old
Container

New
Container

2. UPDATE DOWNLOADED

DEVICE

Supervisor

Old
Container

New
Container

3. OLD CONTAINER KILLED,
NEW ONE STARTED

DEVICE

Supervisor

Old
Container

New
Container

1. DOWNLOAD THE UPDATE

DEVICE

New
Container

Strategy 1: Download then Kill (default)

Strategy 2: Hand Over

Supervisor

Old
Container

New
Container

2. UPDATE DOWNLOADED

DEVICE

Supervisor

Old
Container

New
Container

3. NEW CONTAINER
STARTED

DEVICE

Supervisor

Old
Container

1. DOWNLOAD THE
UPDATE

DEVICE

New
Container

Supervisor

Old
Container

New
Container

4. NEW CONTAINER ASKS
OLD CONTAINER TO GIVE UP

DEVICE

Supervisor

Old
Container

New
Container

5. OLD CONTAINER
IS READY TO DIE

Notifies

On TimeoutOn Timeout

Supervisor

New
Container

6. OLD CONTAINER KILLED

DEVICE

Old
Container

DEVICE

Update strategies

Drone demo

● If you squint, containers look a lot like host OS images
and vice versa

Can we unify?

We think yes. Come to our booth to talk about it :)

Food for thought

● Resin OS Github Organisation
○ https://github.com/resin-os

● Resin device supervisor
○ https://github.com/resin-io/resin-supervisor

● Gitter
○ https://gitter.im/resin-io/chat

Open source

https://github.com/resin-os
https://github.com/resin-os
https://github.com/resin-io/resin-supervisor
https://github.com/resin-io/resin-supervisor
https://gitter.im/resin-io/chat
https://gitter.im/resin-io/chat

Get in touch: Petros Angelatos // petrosagg@resin.io // @petrosagg

Questions?

mailto:petrosagg@resin.io

