

Virtual Memory and Linux

Alan Ott
Embedded Linux Conference

April 4-6, 2016

About the Presenter

● Linux Architect at SoftIron
– 64-bit ARM servers and data center appliences

● Linux Kernel
● Firmware
● Userspace
● Training
● USB

– M-Stack USB Device Stack for PIC
● 802.15.4 wireless

Physical Memory

Flat Memory

● Older and modern, but simple systems have
a single address space
● Memory and peripherals share

– Memory will be mapped to one part
– Peripherals will be mapped to another

● All processes and OS share the same
memory space
– No memory protection!
– User space can stomp kernel mem!

Flat Memory

● CPUs with flat memory
● 8086-80206
● ARM Cortex-M
● 8- and 16-bit PIC
● AVR
● SH-1, SH-2
● Most 8- and 16-bit systems

x86 Memory Map

● Lots of Legacy
● RAM is split (DOS

Area and Extended)
● Hardware mapped

between RAM
areas.

● High and Extended
accessed differently

Limitations

● Portable C programs expect flat memory
● Accessing memory by segments limits portability

● Management is tricky
● Need to know or detect total RAM
● Need to keep processes separated

● No protection
● Rogue programs can corrupt the

entire system

Virtual Memory

What is Virtual Memory?

● Virtual Memory is an address mapping
● Maps virtual address space to

physical address space
– Maps virtual addresses to physical RAM
– Maps virtual addresses to hardware devices

● PCI devices
● GPU RAM
● On-SoC IP blocks

What is Virtual Memory?

● Advantages
● Each processes can have a different memory

mapping
– One process's RAM is inaccessible

(and invisible) to otherprocesses.
● Built-in memory protection

– Kernel RAM is invisible to userspace
processes

● Memory can be moved
● Memory can be swapped to disk

What is Virtual Memory?

● Advantages (cont)
● Hardware device memory can be mapped into a

process's address space
– Requires kernel perform the mapping

● Physical RAM can be mapped into
multiple processes at once
– Shared memory

● Memory regions can have access
permissions
– Read, write, execute

Virtual Memory Details

● Two address spaces
● Physical addresses

– Addresses as used by the hardware
● DMA, peripherals

● Virtual addresses
– Addresses as used by software

● Load/Store instructions (RISC)
● Any instruction accessing RAM (CISC)

Virtual Memory Details

● Mapping is performed in hardware
● No performance penalty for accessing already-

mapped RAM regions
● Permissions are handled without penalty
● The same CPU instructions are used for

accessing RAM and mapped hardware
● Software, during its normal operation,

will only use virtual addresses.
– Includes kernel and userspace

Memory-Management Unit

● The memory-management unit (MMU) is the
hardware responsible for implementing virtual
memory.
● Sits between the CPU core and memory
● Most often part of the physical CPU itself.

– On ARM, it's part of the licensed core.
● Separate from the RAM controller

– DDR controller is a separate IP block

Memory-Management Unit

● MMU (cont)
● Transparently handles all memory accesses from

Load/Store instructions
– Maps accesses using virtual addresses to

system RAM
– Maps accesses using virtual addresses to

memory-mapped peripheral hardware
– Handles permissions
– Generates an exception (page fault)

on an invalid access
● Unmapped address or insufficient

permissions

Translation Lookaside Buffer

● The TLB stores the mappings from virtual to
physical address space in hardware
● Also holds permission bits

● TLB is part of the MMU

Translation Lookaside Buffer

● TLB is consulted by the MMU when
the CPU accesses a virtual address
● If the virtual address is not in the TLB,

the MMU will generate a page fault
exception and interrupt the CPU.
– If the address is in the TLB, but the

permissions are insufficient,
the MMU will generate a page fault.

● If the virtual address is in the TLB,
the MMU can look up the physical
resource (RAM or hardware).

Page Faults

● A page fault is a CPU exception, generated
when software attempts to use an invalid virtual
address. There are three cases:
● The virtual address is not mapped for the

process requesting it.
● The processes has insufficient

permissions for the address requested.
● The virtual address is valid, but

swapped out
– This is a software condition

Lazy Allocation

● The kernel uses lazy allocation of physical
memory.
● When memory is requested by userspace,

physical memory is not allocated until it's
touched.

● This is an optimization, knowing that many
userspace programs allocate more
RAM than they ever touch.
– Buffers, etc.

Virtual Addresses

● In Linux, the kernel uses virtual addresses, as
userspace processes do.
● This is not true in all OS's

● Virtual address space is split.
● The upper part is used for the kernel
● The lower part is used for userspace

● On 32-bit, the split is at
0xC0000000

Virtual Addresses - Linux

● By default, the
kernel uses the top
1GB of virtual
address space.

● Each userspace
processes get the
lower 3GB of
virtual address
space.

Virtual Addresses – Linux

● Kernel address space is the area above
CONFIG_PAGE_OFFSET.
● For 32-bit, this is configurable at kernel build time.

– The kernel can be given a different amount of
address space as desired

● See CONFIG_VMSPLIT_1G,
CONFIG_VMSPLIT_2G, etc.

● For 64-bit, the split varies by
architecture, but it's high enough
– 0x8000000000000000 – ARM

– 0xffff880000000000 – x86_64

Virtual Addresses - Linux

● There are three kinds of virtual addresses in
Linux.
● The terminology varies, even in the kernel source,

but the definitions in Linux Device Drivers,
3rd Edition, chapter 15, are somewhat
standard.

● LDD 3 can be downloaded for free at:
https://lwn.net/Kernel/LDD3/

https://lwn.net/Kernel/LDD3/

Kernel Logical Addresses

● Kernel Logical Addresses
● Normal address space of the kernel
● Addresses above PAGE_OFFSET
● Virtual addresses are a fixed offset from

their physical addresses.
– Eg: Virt: 0xc0000000 → Phys: 0x00000000

● This makes converting between
physical and virtual addresses easy

Kernel Logical Addresses

Kernel Logical Addresses

● Kernel Logical addresses can be converted to
and from physical addresses using the macros:

__pa(x)

__va(x)

● For low-memory systems (below ~1G
of RAM) Kernel Logical address
space starts at PAGE_OFFSET
and goes through the end of
physical memory.

Kernel Logical Addresses

● Kernel logical address space includes:
● Memory allocated with kmalloc() and

most other allocation methods
● Kernel stacks (per process)

● Kernel logical memory can never
be swapped out!

Kernel Logical Addresses

● Kernel Logical Addresses use a fixed mapping
between physical and virtual address space.

● This means virtually-contiguous regions
are by nature also physically
contiguous
● This, combined with the inability to be

swapped out, makes them suitable for
DMA transfers.

Kernel Logical Addresses

● For large memory systems (more than ~1GB
RAM), not all of the physical RAM can be
mapped into the kernel's address space.
● Kerrnel address space is the top 1GB of

virtual address space, by default.
● Further, 128 MB is reserved at the top

of the kernel's memory space for
non-contiguous allocations
– See vmalloc() described later

●

Kernel Logical Addresses

● Thus, in a large memory situation, only the
bottom part of phyical RAM is mapped directly
into kernel logical address space
● Or rather, only the bottom part of physical

RAM has a kernel logical address

● Note that on 64-bit systems, this case
never happens.
● There is always enough kernel

address space to accommodate
all the RAM.

Kernel Logical Addresses (Large Mem)

Kernel Virtual Addresses

● Kernel Virtual Addresses are addresses in the
region above the kernel logical address
mapping.

● Kernel Virtual Addresses are used for
non-contiguous memory mappings
● Often for large buffers which could

potentially be unable to get physically
contiguous regions allocated.

● Also referred to as the vmalloc()
area

Kernel Virtual Addresses

Kernel Vitrual Addresses

● In the small memory model, as shown, since all
of RAM can be represented by logical
addresses, all virtual addresses will also have
logical addresses.
● One mapping in virtual address area
● One mapping in logical address area

Kernel Virtual Addresses

● The important difference is that memory in the
kernel virtual address area (or vmalloc() area)
is non-contiguous physically.
● This makes it easier to allocate, especially

for large buffers
● This makes it unsuitable for DMA

Kernel Virtual Addresses (Large Mem)

Kernel Virtual Addresses

● In a large memory situation, the kernel virtual
address space is smaller, because there is
more physical memory.
● An interesting case, where more memory

means less virtual address space.
● In 64-bit, of course, this doesn't happen,

as PAGE_OFFSET is large, and there
is much more virtual address space.

User Virtual Addresses

● User Virtual Addresses represent memory used
by user space programs.
● This is most of the memory on most systems
● This is where most of the complication is

● User virtual addresses are all
addresses below PAGE_OFFSET.

● Each process has its own mapping
● Except in some rare, special

cases.

User Virtual Addresses

● Unlike kernel logical addresses, which use a
fixed mapping between virtual and physical
addresses, user space processes make full use
of the MMU.
● Only the used portions of RAM are

mapped
● Memory is not contiguous
● Memory may be swapped out
● Memory can be moved

User Virtual Addresses

● Since user virtual addresses are not
guaranteed to be swapped in, or even allocated
at all, user pointers are not suitable for use with
kernel buffers or DMA, by default.

● Each process has its own memory map
● struct mm

● At context switch time, the memory
map of the new process is used
● This is part of the context switch

overhead

User Virtual Addresses

● Each process will
have its own
mapping for user
virtual addresses

● The mapping is
changed during
context switch

The Memory Management Unit

The MMU

● The Memory Management Unit (MMU) is a
hardware component which manages virtual
address mappings
● Maps virtual addresses to physical

addresses

● The MMU operates on basic units of
memory called pages
● Page size varies by architecture
● Some architectures have

configurable page sizes

The MMU

● Common page sizes:
● ARM – 4k
● ARM64 – 4k or 64k
● MIPS – Widely Configurable
● x86 – 4k

➢ Architectures which are configurable
are configured at kernel build time.

The MMU

● Terminology
● A page is a unit of memory sized and aligned at the

page size.
● A page frame, or frame, refers to a page-

sized and page-aligned physical memory
block.
➢ A page is somewhat abstract, where a

frame is concrete
➢ In the kernel, the abbreviation pfn, for

page frame number, is often used to
refer to refer to physical page frames

The MMU

● The MMU operates in pages
● The MMU maps physical frames to virtual

addresses.
● The TLB holds the entries of the mapping

– Virtual address
– Physical address
– Permissions

● A memory map for a process will
contain many mappings

Page Faults

● When a process accesses a region of memory
that is not mapped, the MMU will generate a
page fault exception.
● The kernel handles page fault exceptions

regularly as part of its memory
management design.

Basic TLB Mappings

Basic TLB Mappings

Basic TLB Mappings

Basic TLB Mappings

Basic TLB Mappings

Basic TLB Mappings

● Mappings to virtually contiguous regions do not
have to be physically contiguous.
– This makes memory easier to allocate.

– Almost all user space code does not need
physically contiguous memory.

Multiple Processes

● Each process has its own mapping.
● The same virtual addresses in different processes

may be used to point to different physical
addresses in other processes

Multiple Processes – Process 1

Multiple Processes – Process 2

Shared Memory

● Shared memory is easily implemented with an
MMU.
– Simply map the same physical frame into

two different processes.

– The virtual addresses need not be the
same.

● If pointers to values inside a shared
memory region are used, it might be
important for them to have the same
virtual addresses, though.

Shared Memory – Process 1

Shared Memory – Process 2

Shared Memory

● Note in the previous example, the shared
memory region was mapped to different virtual
addresses in each process.

● The mmap() system call allows the
user space process to request a virtual
address to map the shared memory
region.
● The kernel may not be able to grant

a mapping at this address,
causing mmap() to return failure.

Lazy Allocation

● The kernel will not allocate pages requested by
a process immediately.
● The kernel will wait until those pages are

actually used.
● This is called lazy allocation and is a

performance optimization.
– For memory that doesn't get used,

allocation never has to happen!

Lazy Allocation

● Process
● When memory is requested, the kernel simply

creates a record of the request, and then returns
(quickly) to the process, without updating
the TLB.

● When that newly-allocated memory is
touched, the CPU will generate a page
fault, because the CPU doesn't know
about the mapping

Lazy Allocation

● Process (cont)
● In the page fault handler, the kernel determines that

the mapping is valid (from the kernel's point of
view).

● The kernel updates the TLB with the new
mapping

● The kernel returns from the exception
handler and the user space program
resumes.

Lazy Allocation

● In a lazy allocation case, the user space
program never is aware that the page fault
happened.
● The page fault can only be detected in the

time that was lost to handle it.

● For processes that are time-sensitive,
data can be pre-faulted, or simply
touched, at the start of execution.
● Also see mlock() and
mlockall() for pre-faulting.

Page Tables

● The entries in the TLB are a limited resource.
● Far more mappings can be made than can exist

in the TLB at one time.
● The kernel must keep track of all of the

mappings all of the time.
● The kernel stores all this information

in the page tables.

Page Tables

● Since the TLB can only hold a limited subset of
the total mappings for a process, some
mappings will not have TLB entries.
● When these addresses are touched, the

CPU will generate a page fault, because
the CPU has knowledge of the mapping.

Page Tables

● When the page fault handler executes in this
case, it will:
● Find the appropriate mapping for the offending

address in the kernel's page tables
● Select and remove an existing TLB entry
● Create a TLB entry for the page

containing the address
● Return to the user space process

➢ Observe the similarities to lazy
allocation handling

Swapping

● When memory allocation is high, the kernel
may swap some frames to disk to free up RAM.
● Having an MMU makes this possible.

● The kernel can copy a frame to disk
and remove its TLB entry.

● The frame can be re-used by
another process

Swapping

● When the frame is needed again, the CPU will
generate a page fault (because the address is
not in the TLB)

● The kernel can then, at page fault time:
● Put the process to sleep
● Copy the frame from the disk into an

unused frame in RAM
● Fix the page table entry
● Wake the process

Swapping

● Note that when the page is restored to RAM, it's
not necessarily restored to the same physical
frame where it originally was located.

● The MMU will use the same virtual
address though, so the user space
program will not know the difference
➢This is why user space memory

cannot typically be used for DMA.

Alan Ott
alan@signal11.us
www.signal11.us

+1 407-222-6975 (GMT -5)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

