Audio on Linux: End of a Golden Age?

Lars-Peter Clausen – Analog Devices
Agenda

• History
 – Major transitions in software and hardware architecture

• Present
 – A look at the current situation
 – Are we in a golden age?

• Future
 – What major transitions lie ahead of us
 – How are we going to react to them?
Interdependent vs. Modular
- No clear boundaries defined between sub-modules
- Different sub-modules are aware of each other's internals
 - Creates dependencies
- Parts can't be upgraded or modified independently of each other
Modular

- Partitioning in sub-modules
- Clearly defined functions and interfaces
- Parts can be changed independently of each other
 - Drop-in replacements
- Constraint by the interface
History
Humble Beginnings
PC Speaker (Beeper)

- Found in all IBM compatible PCs
 - Present in the first IBM PC 5150 (1981)
- Has only two states
 - Toggling a specific frequency generates a tone (PWM)
- Magnetic or Piezoelectric plate
- In Linux supported by the input framework
Extending Features
• First widespread consumer sound card
 – Soundblaster 1.0 release in 1989
• Primarily synthesizer based
• Mono PCM channel
• Became defacto standard for consumer sound cards
 – Many applications expected a sound blaster interface
 – Other manufacturers included a Soundblaster compatibility mode in their hardware
Audio on Linux
Open Sound System (OSS)
Open Sound System (OSS)

- Used to be default audio subsystem in v2.4
- /dev/dsp interface
 - To playback audio use `write()`
 - To capture audio use `read()`
 - Some IOCTLs for management task
- Limited to one soundcard per system
Open Sound System (OSS)

- Linux today still supports OSS
 - Natively – A few OSS only drivers remain
 - Emulation – Through ALSA
- Disabled in all major distributions today
- Userspace emulation is available
Advance Linux Sound Architecture (ALSA)
ALSA

- First release in 1998
- Was added to the kernel during v2.5 development in 2002
- Replaced OSS
ALSA – Basic Architecture

- Split into kernel and userspace components
- Accurately describe the hardware capabilities
 - No emulation of missing hardware functionality at the lowest level
- Server/Client architecture
- Modular plugin architecture
 - Stackable modules
 - Implement emulation in modules
ALSA – Basic Architecture

- Organized into
 - Sound card (physical hardware device)
 - Device (PCM, mixer, MIDI, timer)
 - Subdevice (Specific endpoint)
ALSA – Controls

- Allows to control device configuration
- Different types
 - Volume (with gain table)
 - Switch
 - Enumeration
- Each control has a name
 - Follows standard naming scheme
ALSA – Constraint System

- Each PCM stream has a configuration space
 - 14 different parameters
- Used to negotiate stream configuration between userspace and driver
- Allows to progressively discover the capabilities of the hardware

<table>
<thead>
<tr>
<th></th>
<th>Rate</th>
<th>Ch 1</th>
<th>Ch 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>16k</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32k</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reducing Cost
Software Soundcards

- CPUs became a lot more powerful in the mid-90s
- The relative amount of CPU usage for audio processing became small
- Hardware is simplified
 - No more synthesizers
 - No more mixers
- Features are moved into software
Audio CODEC '97 (AC'97)

- Standardization of audio devices
- Introduced in 1997
- Split into controller and CODEC
- Common control and data bus
- CODEC standard register map
 - Discoverable feature set
 - Vendor specific extensions
USB Audio Class

- USB defines standard device classes
 - Compatibility between different devices offering the same service
- USB Audio Class was part of the first USB standard (1.1) in 1998
- ALSA added USB audio class support in 2002
The Sound Server Wars
The Sound Server Wars

- Users want to be able to play multiple audio streams at the same time
- Hardware no longer has mixing capabilities
- Introduction of sound servers
 - Mix multiple streams in software
 - Forward mixed stream to ALSA
The Sound Server Wars

• Different Desktop environments adopted different sound servers
 – artsd, KDE project
 – ESD, Enlightened Desktop Environment and GNOME

• Each sound server had their own client API
 – Applications had to choose which API to use

• It is not possible to use applications using different APIs at the same time
PulseAudio

- Development started in 2004
- Distributions started shipping it in 2007-2008 as the default sound server
- Provided compatibility layers for other APIs
 - Won the sound server wars
- Simplified audio API
 - Good for application adoption
PulseAudio – A Modern Sound Server

• Introduced many differentiating features
 – Timer-based audio scheduling
 • Low latency and power-saving
 – Per application volume
 – Network capable
 – Bluetooth integration
 – Multi-user capable
• Has virtually replaced all other sound servers
 – Default on all major distributions
Embedded on the Rise
ALSA for System on a Chip (ASoC)

- Merged upstream in 2006
- Split driver framework into 3 categories of drivers
 - Platform: Copy data from memory to sound pipeline (DMA or PIO)
 - CPU DAI: Output data onto an external audio bus
 - CODEC: Mixing and ADC/DAC
- Fabric driver combines components
 - Describes external components (speaker, microphone)
ASoC – DAPM

- Dynamic Audio Power Management (DAPM)
- Graph-based description of functional modules
- Fine grained power tracking
- Cross device dependency management
Modern Hardware
High Definition Audio (HDA)

- Successor to AC'97
 - Introduced in 2004
- Follows the general approach of AC'97
 - Split between host controller and CODEC
 - But is a lot more flexible
- Self-describing
 - Allows generic driver
 - Quirks still required
High Definition Audio (HDA)

- Hierarchical function groups
- RPC style communication
- Used for all on-board audio
- Also used for HDMI and DisplayPort audio
Mobile

- Mobile devices have become the predominant multimedia devices
- Audio quality and features are a differentiating factor
 - Hardware is highly specialized
- Mobile distributions use a different development model
 - One software package per device
- Hardware specific sound servers
 - Aware of low level implementation details of the sound hardware
Present
Linux Consumer Audio Stack Today

Userspace:
- PulseAudio
- alsalib

Kernel:
- ALSA
- HDA driver
- USB driver

Hardware:
- HDA
- USB
Homogeneous Hardware Environment

- Virtually all shipped hardware had on-board HDA
- Most external hardware uses USB
- Large portion of driver development focuses on these platforms
- Small niche for professional and prosumer audio
 - Mostly Firewire based
Stable Software Environment

- **PulseAudio** is the default sound server on the majority of Linux distributions
 - Is aware of HDA and USB
 - Teething problems have been solved
- **Jack audio server** optionally available for more professional audio setups
 - Jack and PulseAudio know about each other and can negotiate hardware access
Embedded has Risen
Driver Development Statistics

Commits over the last 5 years

<table>
<thead>
<tr>
<th>Category</th>
<th>Commits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio total</td>
<td>14700</td>
</tr>
<tr>
<td>ALSA core</td>
<td>500</td>
</tr>
<tr>
<td>HDA</td>
<td>2100</td>
</tr>
<tr>
<td>Other PCI drivers</td>
<td>20-100 each (500 total)</td>
</tr>
<tr>
<td>USB</td>
<td>600</td>
</tr>
<tr>
<td>Firewire drivers</td>
<td>10-80 each (300 total)</td>
</tr>
<tr>
<td>ASoC</td>
<td>9500 (50/50 between CODEC and host)</td>
</tr>
</tbody>
</table>
Future
The next Transition
The next Transition

- Already started 1-2 years ago
- Concepts pioneered in the embedded/mobile sector are applied to all battery power hardware
- Devices are shipping now
Focus has shifted towards mobile multimedia
 - Power-limited due to battery operation
 - Power consumption has become a differentiating factor
Silicon has become much cheaper
Processing can be done more power efficient in specialized hardware
Keeping up
Use Case Manager (UCM)

- Groups control settings by function
 - E.g. “phone call”, “HiFi music”
- Sound servers select function
- Each unique component combination requires a set of UCM files
Topology

- Firmware file describing the hardware provided by userspace
- Initially intended to describe flow graph of a DSP firmware
- Now also used to describe hardware connections
Time for a major Overhaul?
Time for a Upgrade

- The hardware landscape has radically changed since the introduction of ALSA
- Core concepts of ALSA make for a very good, flexible and high-performance hardware abstraction layer
- Stay true to these core concepts
- Extend the framework to cover new use cases
New Component Model

- ASoC flattens component tree
 - Represented as single ALSA device
 - Applications can not identify which function belongs to which component

- Make components a top-level concept of ALSA
 - Allow applications to discover the hardware topology

- Most future sound cards will use ASoC
 - Make ASoC first level citizen in ALSA
New Component Model

- Concept of Platform, CPU-DAI, CODEC is overhauled
 - Functions are no longer clearly separated
 - Configuration space is shared between all components
- Remove distinction between different component types
- Introduce concept of domains and bridges
Applications do not know how a control affects the flow graph
 - Composite gain/attenuation
 - Routing

Export a annotated flow graph
Summary
Summary – Not a Happy End

• We are at the end of a golden era
• Hardware has already gone through the next transition
• Software has failed to keep up so far
• The next few years will be tough
 – There is hope though
Thanks
Q/A
Controls

• Controls are currently exported in a flattened hierarchy
 - Applications can not discover which control belongs where

• Create a component hierarchy which is used to group controls
Revamp ASoC Component Model

DMA
- Playback PCM domain
- Capture PCM domain

Audio controller
- Digital domain
- SRC
- Digital domain
- DAI

Codec
- Digital domain
- Link domain
- DAI
- DAC

Analog domain
- ADC