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Reasons for entry into the kernel
● System calls (64-bit, compat, 32-bit)

● Interrupts (NMIs, APIC, timer, IPIs... )

– software: INT 0x0-0xFF, INT3, …

– external (hw-generated): CPU-ext logic, async to insn exec

● Architectural exceptions (sync vs async)

– faults: precise, reported before faulting insn => restartable 
(#GP,#PF)

– traps: precise, reported after trapping insn (#BP,#DB-both)

– aborts: imprecise, not reliably restartable (#MC, unless 
MCG_STATUS.RIPV)
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Intr/Ex entry
● IDT, int num index into it (256 vectors); all modes need an IDT

● If handler has a higher CPL, switch stacks

● A picture is always better:
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45sec guide to Segmentation
● Continuous range at an arbitrary position in VA space

● Segments described by segment descriptors

● … selected by segment selectors

● … by indexing into segment descriptor tables (GDT,LDT,IDT,...)

● … and loaded by the hw into segment registers:

– user: CS,DS,{E,F,G}S,SS

– system: GDTR,LDTR,IDTR,TR (TSS)
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A couple more seconds of Segmentation
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● L (bit 21) new long mode attr: 1=long mode, 0=compat mode
● D (bit 22): default operand and address sizes

● legacy: D=1b – 32bit, D=0b – 16bit
● long mode: D=0b – 32-bit, L=1,D=1 reserved for future use

● G (bit 23): granularity: G=1b: seg limit scaled by 4K
● DPL: Descriptor Privilege Level of the segment



Legacy syscalls
● Call OS through gate descriptor (call, intr, trap or task gate)

● Overhead due to segment-based protection:

– load new selector + desc into segment register (even with flat 
model due to CS/SS reloads during privilege levels switches)

– Selectors and descriptors are in proper form

– Descriptors within bounds of descriptor tables

– Gate descs reference the appropriate segment descriptors

– Caller, gate and target privs are sufficient for transfer to take place

– Stack created by the call is sufficient for the transfer
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Syscalls, long mode
● SYSCALL + SYSRET

● ¼th of the legacy CALL/RET clocks

● Flat mem model with paging (CS.base=0, ignore CS.limit) 

● Load predefined CS and SS

● Eliminate a bunch of unneeded checks

– Assume CS.base, CS.limit and attrs are unchanged, only CPL 
changes

– Assume SYSCALL target CS.DPL=0, SYSRET target CS.DPL=3 
(SYSCALL sets CPL=0)
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Syscalls, long mode

● Targets and CS/SS selectors configured through MSRs

● Long/Compat mode Syscall Target AddRess

● SFMASK: rFLAGS to be cleared during 
SYSCALL
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SYSCALL, long mode
● %rcx = %rip + sizeof(SYSCALL==0f 05) = %rip + 2 (i.e., next_RIP)

● %rip = MSR_LSTAR(0xC000_0082) (MSR_CSTAR in compat mode)

● %r11 = rFLAGS & ~RF (so that SYSRET can reenable insn #DB)

– RF: resume flag, cleared by CPU on every insn retire

– RF=1b => #DB for insn breakpoints are disabled until insn retires
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SYSCALL, long mode
● CS.sel = MSR_STAR.SYSCALL_CS & 0xfffc /* enforce RPL=0 */

● [47:32] = 0x10 which is __KERNEL_CS, i.e. 2*8

● CS.L=1b, CS.DPL=0b, CS.R=1b /* read/exec, 64-bit mode */

● CS.base = 0x0, CS.limit = 0xFFFF_FFFF /* seg in long mode */

● SS.sel = MSR_STAR.SYSCALL_CS + 8 /* sels are hardcoded, 
i.e., this is __KERNEL_DS */

● SS.W=1b, SS.E=0b /* r/w segment, expand-up */

● SS.base = 0x0, SS.limit = 0xFFFF_FFFF
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SYSCALL, long mode
● RFLAGS &= ~MSR_SFMASK (0xC000_0084): 0x47700

– TF (Trap Flag): do not singlestep the syscall from luserspace

– IF (Intr Flag): disable interrupts, we do enable them a little later

– DF (Dir Flag): reset direction of string processing insns (no need for CLD)

– IOPL >= CPL for kernel to exec IN(S),OUT(S), thus reset it to 0 as we're 
in CPL0

– NT: IRET reads NT to know whether current task is nested

– AC: disable alignment checking (no need for CLAC)

● rFLAGS.RF=0

● CPL = 0
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SYSCALL, long mode/kernel
● entry_SYSCALL_64:

● Up to 6 args in registers:

– RAX: syscall #

– RCX: return address

– R11: saved rFLAGS & ~RF

– RDI, RSI, RDX, R10, R8, R9: args

– for comparison with C ABI: RDI, RSI, RDX, RCX, R8, R9

● A bit later we do movq %r10, %rcx to get it to conform to C ABI

– R12-R15, RBP, RBX: callee preserved
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SYSCALL, long mode/kernel
● Example: int stat(const char *pathname, struct stat *buf)

● %rax: syscall #, stat() → sys_newstat()

● %rip = entry_SYSCALL_64

● %rcx = caller RIP, i.e. next_RIP

●  %r11 = rFLAGS

● %rdi = *pathname

● %rsi = *buf

● CS=0x10

● SS=0x18
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SYSCALL, long mode/kernel
● SWAPGS_UNSAFE_STACK

● Load kernel data structures so that we can switch stacks and save 
user regs

● Swap GS shadow (MSR_KERNEL_GS_BASE: 0xC000_0102) with 
GS.base (hidden portion) (MSR_GS_BASE: 0xC000_0101)

● SWAPGS doesn't require GPRs or memory operands

● Before SWAPGS: 

● After:

● dmesg: 
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SYSCALL, long mode/kernel
● movq %rsp, PER_CPU_VAR(rsp_scratch) → 

mov   %rsp, %gs:0xb7c0

● Let's see what's there:

● per_cpu area starts at 0xffff_8800_7ec0_0000

● So what's at 0xffff_8800_7ec0_b780?

● That must be the user stack pointer:

●

●

● Ok, persuaded! :-)
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SYSCALL, long mode/kernel
● movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp

● cpu_current_top_of_stack is:

– cpu_tss + OFFSET(TSS_sp0,tss_struct, x86_tss.sp0)

– i.e., CPL0 stack ptr in TSS

● tss_struct contains CPL[0-3] stacks, io perms bitmap and temporary 
SYSENTER stack

● TRACE_IRQS_OFF: CONFIG_TRACE_IRQFLAGS - trace when we enable 
and disable IRQs

● #define TRACE_IRQS_OFF        call trace_hardirqs_off_thunk;

● THUNKing: stash callee-clobbered regs before calling C functions
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SYSCALL, long mode/kernel
● Construct user pt_regs on stack. Hand them down to helper 

functions, see later

● __USER_DS: user stack, sel must be between 32- and 64-bit CS

● user RSP we just saved in rsp_scratch

● __USER_CS: user code segment's selector

● -ENOSYS: non-existent syscall

● Prepare full IRET frame in 
case we have to IRET
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IRET frame
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Always push 
SS to allow 
return to 
compat mode 
(SS ignored in 
long mode).



SYSCALL, long mode/kernel
testl $_TIF_WORK_SYSCALL_ENTRY | _TIF_ALLWORK_MASK,

ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)

● ASM_THREAD_INFO: get the offset to thread_info->flags on the 
bottom of the kernel stack

● test if we need to do any work on syscall entry:

– TIF_SYSCALL_TRACE: ptrace(PTRACE_SYSCALL, …), f.e., 
examine syscall args of tracee

– TIF_SYSCALL_EMU: ptrace(PTRACE_SYSEMU, …), UML 
emulates tracee's syscalls
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SYSCALL, long mode/kernel
– TIF_SYSCALL_AUDIT: syscall auditing, pass args to auditing 

framework, see CONFIG_AUDITSYSCALL and userspace tools

– TIF_SECCOMP: secure computing. Syscalls filtering with BPFs, 
see Documentation/prctl/seccomp_filter.txt

– TIF_NOHZ: used in context tracking, eg. userspace ext. RCU

– TIF_ALLWORK_MASK: all TIF bits [15-0] for pending work are in 
the LSW

● Thus, if any work needs to be done on SYSCALL entry, we jump to 
the slow path
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SYSCALL, long mode/kernel
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● TRACE_IRQS_ON: counterpart to *OFF with the thunk

● ENABLE_INTERRUPTS: wrapper for paravirt, plain STI on baremetal

● __SYSCALL_MASK == ~__X32_SYSCALL_BIT:

– share syscall table with X32

– __X32_SYSCALL_BIT is bit 30; userspace sets it if X32 syscall

– we clear it before we
look at the system call
number

– see fca460f95e928



SYSCALL, long mode/kernel
● RAX contains the syscall number, index into the sys_call_table

● Some syscalls need full pt_regs and we end up calling stubs: 
__SYSCALL_64(15, sys_rt_sigreturn, ptregs) → ptregs_sys_rt_sigregurn

● Stub puts real syscall (sys_rt_sigreturn()) addr into %rax and calls 
stub_ptregs_64

● Check we're on the fast path by comparing ret addr to label below

● If so, we disable IRQs and jump to entry_SYSCALL64_slow_path

● Slow path saves extra regs for a full
pt_regs and calls do_syscall_64():
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SYSCALL, long mode/kernel
● Retest if we need to do some exit work with IRQs off. If not

– check locks are held before returning to userspace for lockdep 
(thunked)

– mark IRQs on

– restore user RIP for SYSRET

– rFLAGS too

– remaining regs

– user stack

– SWAPGS

– … and finally SYSRET!

23



SYSRET, long mode
● SYSCALL counterpart, low-latency return to userspace

● CPL0 insn, #GP otherwise

● CPL=3, regardless of MSR_STAR[49:48] (SYSRET_CS)

● Can return to 2½ modes depending on operand size

● 64-bit mode if operand size is 64-bit (EFER.LMA=1b, CS.L=1b)

– CS.sel = MSR_STAR.SYSRET_CS + 16

– CS.attr = 64-bit code, DPL3

– RIP = RCX
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SYSRET, long mode
● 32-bit (compat) mode, operand-size 32-bit (LMA=1, CS.L=0)

– CS.sel = MSR_STAR.SYSRET_CS

– CS.attr = 32-bit code, DPL3 

– RIP = ECX (zero-extended to a 64-bit write)

● For both modes: rFLAGS = R11 & ~(RF | VM)

– reenable #DB

– disable virtual 8086 mode
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SYSRET, long mode
● 32-bit legacy prot mode: CS.L=0b, CS.D=1b

– CS = MSR_STAR.SYSRET_CS

– CS.attr = 32-bit code, DPL=3

– RIP = ECX

– rFLAGS.IF=1b

– CPL=3

● In all 2½ cases:

–  SS.sel = MSR_STAR.SYSRET_CS + 8

– CS.base = 0x0, CS.limit = 0xFFFF_FFFF
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SYSRET, long mode
● SYSRET.CS = 0x23 = GDT_ENTRY_DEFAULT_USER32_CS*8 + 3 

= 4*8 + 3
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SYSCALL, long mode/kernel
● Looks like we need to do some exit work, go the slow path

● … raise(3) will trigger this because of TIF_SIGPENDING

● SAVE_EXTRA_REGS: stash callee-preserved R12-R15, RBP, RBX

● move pt_regs on stack ptr for arg of syscall_return_slowpath() 
which...

– does some sanity-checking

– does syscall exit work (tracing/auditing/...)

– rejoins return path
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SYSCALL, opportunistic SYSRET
● See 2a23c6b8a9c4 ("x86_64, entry: Use sysret to return to 

userspace when possible")

● IRET is damn slow; most syscalls don't touch pt_regs

● Even with exit work pending, we can try to avoid IRET-ting and try 
SYSRET → 80ns gain in syscall overhead

● Conditions we test:

– RCX==RIP? Did the slowpath reroute us somewhere else 
instead of next_RIP

– RIP(%rsp) == Return RIP in IRET frame
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SYSCALL, opportunistic SYSRET
– __VIRTUAL_MASK_SHIFT = 47

–  0x0000_7FFF_FFFF_FFFF – highest user address

– Do canonicality check: zaps non-canonical bits

– If it changed, fail SYSRET instead of getting pwned

– No such check on AMD
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SYSCALL, opportunistic SYSRET
● Comment explains it all:

● Except the trap shadow:

● STI with IF=0

– one insn shadow,
INTR happens in
the caller

● IRET with TF/RF

– #DB realized with
1 insn shadow

31



SYSCALL, opportunistic SYSRET
● Finally check SS

● We win

● Restore C user regs

● Restore user stack ptr

● SWAPGS; SYSRET
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SYSCALL, IRET
● opportunistic SYSRET failed, do IRET

● SWAPGS to user before jumping to IRET label: shared path

● We did restore callee-clobbered R12-R15,RBX,RBP earlier

● Restore remaining C regs

● Remove pt_regs from stack, leave IRET frame: SUB -(15*8+8), %rsp

– +8: kill syscall# too, IRET frame with error code

● paravirt wrapper, jmp native_iret 
on baremetal
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ESPFIX
● When we return to a 16-bit stack segment:

– IRET restores only the lower word of rSP

– causing a leak of the upper word with kernel stack contents

● We fix this with per-CPU ministacks of 64B (cacheline sized), mapped 
2^16 times (128K max CPUs), 64K apart (stride jumps over [15:0])

– on IRET, we copy IRET frame to the ministack and use that alias 
for luserspace

– ministacks are RO-mapped so that a #GP during IRET gets 
promoted to a #DF: an IST-exception with its own stack

– we then do the fixup in the #DF handler
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ESPFIX
● See 3891a04aafd6 ("x86-64, espfix: Don't leak bits 31:16 of %esp 

returning to 16-bit stack")

● Test SS.TI=1b: are we returning to a SS in the LDT, i.e., a task's 
private SS

● SS-RIP because we have only IRET frame on the stack now

35



ESPFIX
● SWAPGS to kernel for percpu vars

● Move the writable espfix_waddr stack address into RDI

● Copy IRET frame there

● Clear [15:0] of RSP

● OR in the RO espfix_stack address

● SWAPGS to user

● Stick stack pointer into RSP

● IRET
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To be continued...
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