
entry_*.S
A carefree stroll through kernel entry code

Borislav Petkov
SUSE Labs
bp@suse.de

Reasons for entry into the kernel
● System calls (64-bit, compat, 32-bit)

● Interrupts (NMIs, APIC, timer, IPIs...)

– software: INT 0x0-0xFF, INT3, …

– external (hw-generated): CPU-ext logic, async to insn exec

● Architectural exceptions (sync vs async)

– faults: precise, reported before faulting insn => restartable
(#GP,#PF)

– traps: precise, reported after trapping insn (#BP,#DB-both)

– aborts: imprecise, not reliably restartable (#MC, unless
MCG_STATUS.RIPV)

2

Intr/Ex entry
● IDT, int num index into it (256 vectors); all modes need an IDT

● If handler has a higher CPL, switch stacks

● A picture is always better:

3

45sec guide to Segmentation
● Continuous range at an arbitrary position in VA space

● Segments described by segment descriptors

● … selected by segment selectors

● … by indexing into segment descriptor tables (GDT,LDT,IDT,...)

● … and loaded by the hw into segment registers:

– user: CS,DS,{E,F,G}S,SS

– system: GDTR,LDTR,IDTR,TR (TSS)

4

A couple more seconds of Segmentation

5

● L (bit 21) new long mode attr: 1=long mode, 0=compat mode
● D (bit 22): default operand and address sizes

● legacy: D=1b – 32bit, D=0b – 16bit
● long mode: D=0b – 32-bit, L=1,D=1 reserved for future use

● G (bit 23): granularity: G=1b: seg limit scaled by 4K
● DPL: Descriptor Privilege Level of the segment

Legacy syscalls
● Call OS through gate descriptor (call, intr, trap or task gate)

● Overhead due to segment-based protection:

– load new selector + desc into segment register (even with flat
model due to CS/SS reloads during privilege levels switches)

– Selectors and descriptors are in proper form

– Descriptors within bounds of descriptor tables

– Gate descs reference the appropriate segment descriptors

– Caller, gate and target privs are sufficient for transfer to take place

– Stack created by the call is sufficient for the transfer

6

Syscalls, long mode
● SYSCALL + SYSRET

● ¼th of the legacy CALL/RET clocks

● Flat mem model with paging (CS.base=0, ignore CS.limit)

● Load predefined CS and SS

● Eliminate a bunch of unneeded checks

– Assume CS.base, CS.limit and attrs are unchanged, only CPL
changes

– Assume SYSCALL target CS.DPL=0, SYSRET target CS.DPL=3
(SYSCALL sets CPL=0)

7

Syscalls, long mode

● Targets and CS/SS selectors configured through MSRs

● Long/Compat mode Syscall Target AddRess

● SFMASK: rFLAGS to be cleared during
SYSCALL

8

SYSCALL, long mode
● %rcx = %rip + sizeof(SYSCALL==0f 05) = %rip + 2 (i.e., next_RIP)

● %rip = MSR_LSTAR(0xC000_0082) (MSR_CSTAR in compat mode)

● %r11 = rFLAGS & ~RF (so that SYSRET can reenable insn #DB)

– RF: resume flag, cleared by CPU on every insn retire

– RF=1b => #DB for insn breakpoints are disabled until insn retires

9

SYSCALL, long mode
● CS.sel = MSR_STAR.SYSCALL_CS & 0xfffc /* enforce RPL=0 */

● [47:32] = 0x10 which is __KERNEL_CS, i.e. 2*8

● CS.L=1b, CS.DPL=0b, CS.R=1b /* read/exec, 64-bit mode */

● CS.base = 0x0, CS.limit = 0xFFFF_FFFF /* seg in long mode */

● SS.sel = MSR_STAR.SYSCALL_CS + 8 /* sels are hardcoded,
i.e., this is __KERNEL_DS */

● SS.W=1b, SS.E=0b /* r/w segment, expand-up */

● SS.base = 0x0, SS.limit = 0xFFFF_FFFF

10

SYSCALL, long mode
● RFLAGS &= ~MSR_SFMASK (0xC000_0084): 0x47700

– TF (Trap Flag): do not singlestep the syscall from luserspace

– IF (Intr Flag): disable interrupts, we do enable them a little later

– DF (Dir Flag): reset direction of string processing insns (no need for CLD)

– IOPL >= CPL for kernel to exec IN(S),OUT(S), thus reset it to 0 as we're
in CPL0

– NT: IRET reads NT to know whether current task is nested

– AC: disable alignment checking (no need for CLAC)

● rFLAGS.RF=0

● CPL = 0

11

SYSCALL, long mode/kernel
● entry_SYSCALL_64:

● Up to 6 args in registers:

– RAX: syscall #

– RCX: return address

– R11: saved rFLAGS & ~RF

– RDI, RSI, RDX, R10, R8, R9: args

– for comparison with C ABI: RDI, RSI, RDX, RCX, R8, R9

● A bit later we do movq %r10, %rcx to get it to conform to C ABI

– R12-R15, RBP, RBX: callee preserved

12

SYSCALL, long mode/kernel
● Example: int stat(const char *pathname, struct stat *buf)

● %rax: syscall #, stat() → sys_newstat()

● %rip = entry_SYSCALL_64

● %rcx = caller RIP, i.e. next_RIP

● %r11 = rFLAGS

● %rdi = *pathname

● %rsi = *buf

● CS=0x10

● SS=0x18

13

SYSCALL, long mode/kernel
● SWAPGS_UNSAFE_STACK

● Load kernel data structures so that we can switch stacks and save
user regs

● Swap GS shadow (MSR_KERNEL_GS_BASE: 0xC000_0102) with
GS.base (hidden portion) (MSR_GS_BASE: 0xC000_0101)

● SWAPGS doesn't require GPRs or memory operands

● Before SWAPGS:

● After:

● dmesg:

14

SYSCALL, long mode/kernel
● movq %rsp, PER_CPU_VAR(rsp_scratch) →

mov %rsp, %gs:0xb7c0

● Let's see what's there:

● per_cpu area starts at 0xffff_8800_7ec0_0000

● So what's at 0xffff_8800_7ec0_b780?

● That must be the user stack pointer:

●

●

● Ok, persuaded! :-)

15

SYSCALL, long mode/kernel
● movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp

● cpu_current_top_of_stack is:

– cpu_tss + OFFSET(TSS_sp0,tss_struct, x86_tss.sp0)

– i.e., CPL0 stack ptr in TSS

● tss_struct contains CPL[0-3] stacks, io perms bitmap and temporary
SYSENTER stack

● TRACE_IRQS_OFF: CONFIG_TRACE_IRQFLAGS - trace when we enable
and disable IRQs

● #define TRACE_IRQS_OFF call trace_hardirqs_off_thunk;

● THUNKing: stash callee-clobbered regs before calling C functions

16

SYSCALL, long mode/kernel
● Construct user pt_regs on stack. Hand them down to helper

functions, see later

● __USER_DS: user stack, sel must be between 32- and 64-bit CS

● user RSP we just saved in rsp_scratch

● __USER_CS: user code segment's selector

● -ENOSYS: non-existent syscall

● Prepare full IRET frame in
case we have to IRET

17

IRET frame

18

Always push
SS to allow
return to
compat mode
(SS ignored in
long mode).

SYSCALL, long mode/kernel
testl $_TIF_WORK_SYSCALL_ENTRY | _TIF_ALLWORK_MASK,

ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)

● ASM_THREAD_INFO: get the offset to thread_info->flags on the
bottom of the kernel stack

● test if we need to do any work on syscall entry:

– TIF_SYSCALL_TRACE: ptrace(PTRACE_SYSCALL, …), f.e.,
examine syscall args of tracee

– TIF_SYSCALL_EMU: ptrace(PTRACE_SYSEMU, …), UML
emulates tracee's syscalls

19

SYSCALL, long mode/kernel
– TIF_SYSCALL_AUDIT: syscall auditing, pass args to auditing

framework, see CONFIG_AUDITSYSCALL and userspace tools

– TIF_SECCOMP: secure computing. Syscalls filtering with BPFs,
see Documentation/prctl/seccomp_filter.txt

– TIF_NOHZ: used in context tracking, eg. userspace ext. RCU

– TIF_ALLWORK_MASK: all TIF bits [15-0] for pending work are in
the LSW

● Thus, if any work needs to be done on SYSCALL entry, we jump to
the slow path

20

SYSCALL, long mode/kernel

21

● TRACE_IRQS_ON: counterpart to *OFF with the thunk

● ENABLE_INTERRUPTS: wrapper for paravirt, plain STI on baremetal

● __SYSCALL_MASK == ~__X32_SYSCALL_BIT:

– share syscall table with X32

– __X32_SYSCALL_BIT is bit 30; userspace sets it if X32 syscall

– we clear it before we
look at the system call
number

– see fca460f95e928

SYSCALL, long mode/kernel
● RAX contains the syscall number, index into the sys_call_table

● Some syscalls need full pt_regs and we end up calling stubs:
__SYSCALL_64(15, sys_rt_sigreturn, ptregs) → ptregs_sys_rt_sigregurn

● Stub puts real syscall (sys_rt_sigreturn()) addr into %rax and calls
stub_ptregs_64

● Check we're on the fast path by comparing ret addr to label below

● If so, we disable IRQs and jump to entry_SYSCALL64_slow_path

● Slow path saves extra regs for a full
pt_regs and calls do_syscall_64():

22

SYSCALL, long mode/kernel
● Retest if we need to do some exit work with IRQs off. If not

– check locks are held before returning to userspace for lockdep
(thunked)

– mark IRQs on

– restore user RIP for SYSRET

– rFLAGS too

– remaining regs

– user stack

– SWAPGS

– … and finally SYSRET!

23

SYSRET, long mode
● SYSCALL counterpart, low-latency return to userspace

● CPL0 insn, #GP otherwise

● CPL=3, regardless of MSR_STAR[49:48] (SYSRET_CS)

● Can return to 2½ modes depending on operand size

● 64-bit mode if operand size is 64-bit (EFER.LMA=1b, CS.L=1b)

– CS.sel = MSR_STAR.SYSRET_CS + 16

– CS.attr = 64-bit code, DPL3

– RIP = RCX

24

SYSRET, long mode
● 32-bit (compat) mode, operand-size 32-bit (LMA=1, CS.L=0)

– CS.sel = MSR_STAR.SYSRET_CS

– CS.attr = 32-bit code, DPL3

– RIP = ECX (zero-extended to a 64-bit write)

● For both modes: rFLAGS = R11 & ~(RF | VM)

– reenable #DB

– disable virtual 8086 mode

25

SYSRET, long mode
● 32-bit legacy prot mode: CS.L=0b, CS.D=1b

– CS = MSR_STAR.SYSRET_CS

– CS.attr = 32-bit code, DPL=3

– RIP = ECX

– rFLAGS.IF=1b

– CPL=3

● In all 2½ cases:

– SS.sel = MSR_STAR.SYSRET_CS + 8

– CS.base = 0x0, CS.limit = 0xFFFF_FFFF

26

SYSRET, long mode
● SYSRET.CS = 0x23 = GDT_ENTRY_DEFAULT_USER32_CS*8 + 3

= 4*8 + 3

27

SYSCALL, long mode/kernel
● Looks like we need to do some exit work, go the slow path

● … raise(3) will trigger this because of TIF_SIGPENDING

● SAVE_EXTRA_REGS: stash callee-preserved R12-R15, RBP, RBX

● move pt_regs on stack ptr for arg of syscall_return_slowpath()
which...

– does some sanity-checking

– does syscall exit work (tracing/auditing/...)

– rejoins return path

28

SYSCALL, opportunistic SYSRET
● See 2a23c6b8a9c4 ("x86_64, entry: Use sysret to return to

userspace when possible")

● IRET is damn slow; most syscalls don't touch pt_regs

● Even with exit work pending, we can try to avoid IRET-ting and try
SYSRET → 80ns gain in syscall overhead

● Conditions we test:

– RCX==RIP? Did the slowpath reroute us somewhere else
instead of next_RIP

– RIP(%rsp) == Return RIP in IRET frame

29

SYSCALL, opportunistic SYSRET
– __VIRTUAL_MASK_SHIFT = 47

– 0x0000_7FFF_FFFF_FFFF – highest user address

– Do canonicality check: zaps non-canonical bits

– If it changed, fail SYSRET instead of getting pwned

– No such check on AMD

30

SYSCALL, opportunistic SYSRET
● Comment explains it all:

● Except the trap shadow:

● STI with IF=0

– one insn shadow,
INTR happens in
the caller

● IRET with TF/RF

– #DB realized with
1 insn shadow

31

SYSCALL, opportunistic SYSRET
● Finally check SS

● We win

● Restore C user regs

● Restore user stack ptr

● SWAPGS; SYSRET

32

SYSCALL, IRET
● opportunistic SYSRET failed, do IRET

● SWAPGS to user before jumping to IRET label: shared path

● We did restore callee-clobbered R12-R15,RBX,RBP earlier

● Restore remaining C regs

● Remove pt_regs from stack, leave IRET frame: SUB -(15*8+8), %rsp

– +8: kill syscall# too, IRET frame with error code

● paravirt wrapper, jmp native_iret
on baremetal

33

ESPFIX
● When we return to a 16-bit stack segment:

– IRET restores only the lower word of rSP

– causing a leak of the upper word with kernel stack contents

● We fix this with per-CPU ministacks of 64B (cacheline sized), mapped
2^16 times (128K max CPUs), 64K apart (stride jumps over [15:0])

– on IRET, we copy IRET frame to the ministack and use that alias
for luserspace

– ministacks are RO-mapped so that a #GP during IRET gets
promoted to a #DF: an IST-exception with its own stack

– we then do the fixup in the #DF handler

34

ESPFIX
● See 3891a04aafd6 ("x86-64, espfix: Don't leak bits 31:16 of %esp

returning to 16-bit stack")

● Test SS.TI=1b: are we returning to a SS in the LDT, i.e., a task's
private SS

● SS-RIP because we have only IRET frame on the stack now

35

ESPFIX
● SWAPGS to kernel for percpu vars

● Move the writable espfix_waddr stack address into RDI

● Copy IRET frame there

● Clear [15:0] of RSP

● OR in the RO espfix_stack address

● SWAPGS to user

● Stick stack pointer into RSP

● IRET

36

To be continued...

37

References
Presentation contains snippets/images from

● AMD's Application Programming Manuals:

http://support.amd.com/en-us/search/tech-docs

● Intel's Software Developers' Manuals:

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html

38

