
Ext4 Filesystem Scaling

Jan Kára <jack@suse.cz>

SUSE Labs

mailto:jack@suse.cz

© SUSE, All rights reserved.2

Overview

• Handling of orphan inodes in ext4

• Shrinking cache of logical to physical block mappings

• Cleanup of transaction checkpoint lists

Orphan Inode Handling

© SUSE, All rights reserved.4

Orphan list

• List of inodes for tracking unlinked open files and files
with truncate in progress

• In case of crash we walk the orphan list and finish
truncates and remove unlinked inodes

• Necessary to avoid leaking such inodes / space on
crash

• Added for ext3 filesystem (around 2000)

• List is filesystem-wide ⇒ scalability issue for parallel
truncates / unlinks

SB Inode A Inode B Inode C

© SUSE, All rights reserved.5

Orphan list contention

• Orphan stress test with 16 processes on 8 CPU server
with 4 GB of RAM, filesystem on ramdisk

• Lockstat except for orphan lock:

• Test execution: 160 s, tasks wait on orphan mutex for
2288 s in total ⇒ 143 s per task.

wait­max wait­total wait­avg acquisitions hold­max hold­total hold­avg
12211.31 2288111288.96 244.07 26209088 85.74 62275116.77 2.38

© SUSE, All rights reserved.6

Orphan List Scalability Improvements

• Joint work with Thavatchai Makphaibulchoke

• List handling inherently unscalable – unsolvable
without on disk format changes

• Still can do something:
‒ Remove unnecessary global lock acquisitions when inode is

already part of orphan list (inode modifications itself guarded
by inode-local lock)

‒ Make critical section shorter

‒ Effective for insertion – blocks to modify known in advace

‒ Not for deletion – blocks to modify known only after taking global lock

• Merged in 3.16

© SUSE, All rights reserved.7

Testing Effect of Changes

• Test data from 48-way Xeon Server with 32 GB RAM

• Ext4 filesystem on ramdisk – preallocated with NUMA
interleave policy

• Average of 5 runs

• Run stress-orphan microbenchmark and reaim
new_fserver workload
‒ Reaim modified to not call sync(1) after every read & write

© SUSE, All rights reserved.8

Effect of Tweaks (stress-orphan)

© SUSE, All rights reserved.9

Effect of Tweaks (reaim - fserver)

© SUSE, All rights reserved.10

Orphan File

• Experimental patches

• Preallocated system file where we store numbers of
orphan inodes

• When we run out of space in orphan file (too many
files deleted in parallel) we fall back to old orphan list

• Hack: Skip journalling block if it is part of running
transaction
‒ Real fix: Improve JBD2 calls to have low overhead if there's

nothing to do (block already in the transaction in correct state)

Block 1
Ino1 Ino2 InoN...

Block 1
Ino1 Ino2 InoN...

Block 2
Ino1 Ino2 InoN...Ino1 Ino2 InoN... ...

© SUSE, All rights reserved.11

Orphan slot allocation strategies

• Simple way to search for free slot in a file – sequential
search from the beginning under a spinlock

• More complex: Hash CPUID to a block in the orphan
file (can have easily more blocks for a CPU), start
searching at that block.
‒ With atomic counters for free entries in a block and cmpxchg()

for storing inode number in a slot completely lockless (except
for journalling locks in rare cases)

© SUSE, All rights reserved.12

Perf. With Orphan File (stress-orphan)

© SUSE, All rights reserved.13

Perf. With Orphan File (reaim - fserver)

Extent Status Tree Shrinker

© SUSE, All rights reserved.15

Extent Status Tree

• Cache for logical to physical block mapping for files

• For each entry we have logical offset, physical block,
length, extent type (delayed allocated, hole, unwritten,
written)

• Organized in RB-tree sorted by logical offset

• In case of memory pressure we need to free some
entries – shrinker
‒ Entries that have delayed allocated type cannot be freed

• MM calls shrinker asking it to scan N objects and free
as much as possible

© SUSE, All rights reserved.16

Extent Status Tree Shrinker

• Need to find entries to reclaim without bloating each
entry too much
‒ Each entry has 16 bytes of useful data

• Keep timestamp when last reclaimable extent was
used in each inode

• On reclaim request scan RB trees of inodes with
oldest timestamps until N entries were reclaimed
‒ Need to sort list of inodes (oops)

‒ Scanning may need to skip lots of unreclaimable extents

• Causing large stalls (watchdog triggered) on machines
with lots of active inodes

© SUSE, All rights reserved.17

Improving Shrinker

• Joint work with Zheng Liu

• Walk inodes in round-robin order instead of LRU
‒ No need for list sorting

• Remember where we stopped scanning inode RB-tree
and start next scan there
‒ Enough to scan (not reclaim) N entries

• Add simple aging via extent REFERENCED bit

• Merged in 3.19

© SUSE, All rights reserved.18

Shrinker Tests

• Create 32 KB sparse files from 16 processes

• Show maximum latency of a shrinker in 5 minute run

• Large memory allocation once per minute to trigger
reclaim

• Test run on 8 CPU machine with 4 GB RAM,
filesystem on standard SATA drive

© SUSE, All rights reserved.19

Test With Lots of Files

© SUSE, All rights reserved.20

Test With Two 1GB Files

• Single process creates two 1GB sparse files

• Large allocation to trigger reclaim

• Max latency reduced from 63132 us to 100 us

Checkpoint List Scanning

© SUSE, All rights reserved.22

Checkpoint List Processing

• Joint work with Yuanhan Liu

• JBD2 tracks all buffers that need checkpointing with
each transaction

• List cleanup on transaction commit and when running
out of journal space

• Expensive for loads with lots of small transactions
‒ fs_mark creating 100000 files, 4 KB each, with fsync

• Scanning list repeatedly not cleaning up anything

44.08% jbd2/ram0­8 [kernel.kallsyms] 0xffffffff81017fe9
23.76% jbd2/ram0­8 [jbd2] journal_clean_one_cp_list
17.22% jbd2/ram0­8 [jbd2] __jbd2_journal_clean_checkpoint

© SUSE, All rights reserved.23

Checkpoint List Processing Speedup

• No big point in further scanning once we find buffer
that cannot be cleaned up

• Reduces cleanup time from O(N2) to O(N)

• Merged for 3.18

Conclusion

© SUSE, All rights reserved.25

Takeaways

• Even if you cannot fundamentally improve scalability,
just reducing length of critical section can help a lot

• But doing things lockless is still faster

• Balance between “sophisticated but slow” and “simple
and fast”

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

