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Overview

• Handling of orphan inodes in ext4

• Shrinking cache of logical to physical block mappings

• Cleanup of transaction checkpoint lists



Orphan Inode Handling
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Orphan list

• List of inodes for tracking unlinked open files and files 
with truncate in progress

• In case of crash we walk the orphan list and finish 
truncates and remove unlinked inodes

• Necessary to avoid leaking such inodes / space on 
crash

• Added for ext3 filesystem (around 2000)

• List is filesystem-wide ⇒ scalability issue for parallel 
truncates / unlinks

SB Inode A Inode B Inode C
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Orphan list contention

• Orphan stress test with 16 processes on 8 CPU server 
with 4 GB of RAM, filesystem on ramdisk

• Lockstat except for orphan lock:

• Test execution: 160 s, tasks wait on orphan mutex for 
2288 s in total ⇒ 143 s per task.

wait­max    wait­total wait­avg acquisitions hold­max  hold­total hold­avg
12211.31 2288111288.96   244.07     26209088    85.74 62275116.77     2.38
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Orphan List Scalability Improvements

• Joint work with Thavatchai Makphaibulchoke

• List handling inherently unscalable – unsolvable 
without on disk format changes

• Still can do something:
‒ Remove unnecessary global lock acquisitions when inode is 

already part of orphan list (inode modifications itself guarded 
by inode-local lock)

‒ Make critical section shorter

‒ Effective for insertion – blocks to modify known in advace

‒ Not for deletion – blocks to modify known only after taking global lock

• Merged in 3.16
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Testing Effect of Changes

• Test data from 48-way Xeon Server with 32 GB RAM

•  Ext4 filesystem on ramdisk – preallocated with NUMA 
interleave policy

• Average of 5 runs

• Run stress-orphan microbenchmark and reaim 
new_fserver workload
‒ Reaim modified to not call sync(1) after every read & write
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Effect of Tweaks (stress-orphan)
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Effect of Tweaks (reaim - fserver)
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Orphan File

• Experimental patches

• Preallocated system file where we store numbers of 
orphan inodes

• When we run out of space in orphan file (too many 
files deleted in parallel) we fall back to old orphan list

• Hack: Skip journalling block if it is part of running 
transaction
‒ Real fix: Improve JBD2 calls to have low overhead if there's 

nothing to do (block already in the transaction in correct state)

Block 1
Ino1 Ino2 InoN...

Block 1
Ino1 Ino2 InoN...

Block 2
Ino1 Ino2 InoN...Ino1 Ino2 InoN... ...
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Orphan slot allocation strategies

• Simple way to search for free slot in a file – sequential 
search from the beginning under a spinlock

• More complex: Hash CPUID to a block in the orphan 
file (can have easily more blocks for a CPU), start 
searching at that block.
‒ With atomic counters for free entries in a block and cmpxchg() 

for storing inode number in a slot completely lockless (except 
for journalling locks in rare cases)
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Perf. With Orphan File (stress-orphan)
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Perf. With Orphan File (reaim - fserver)



Extent Status Tree Shrinker



©  SUSE, All rights reserved.15

Extent Status Tree

• Cache for logical to physical block mapping for files

• For each entry we have logical offset, physical block, 
length, extent type (delayed allocated, hole, unwritten, 
written)

• Organized in RB-tree sorted by logical offset

• In case of memory pressure we need to free some 
entries – shrinker
‒ Entries that have delayed allocated type cannot be freed

• MM calls shrinker asking it to scan N objects and free 
as much as possible
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Extent Status Tree Shrinker

• Need to find entries to reclaim without bloating each 
entry too much
‒ Each entry has 16 bytes of useful data

• Keep timestamp when last reclaimable extent was 
used in each inode

• On reclaim request scan RB trees of inodes with 
oldest timestamps until N entries were reclaimed
‒ Need to sort list of inodes (oops)

‒ Scanning may need to skip lots of unreclaimable extents

• Causing large stalls (watchdog triggered) on machines 
with lots of active inodes
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Improving Shrinker

• Joint work with Zheng Liu

• Walk inodes in round-robin order instead of LRU
‒ No need for list sorting

• Remember where we stopped scanning inode RB-tree 
and start next scan there
‒ Enough to scan (not reclaim) N entries

• Add simple aging via extent REFERENCED bit

• Merged in 3.19
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Shrinker Tests

• Create 32 KB sparse files from 16 processes

• Show maximum latency of a shrinker in 5 minute run

• Large memory allocation once per minute to trigger 
reclaim

• Test run on 8 CPU machine with 4 GB RAM, 
filesystem on standard SATA drive
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Test With Lots of Files
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Test With Two 1GB Files

• Single process creates two 1GB sparse files

• Large allocation to trigger reclaim

• Max latency reduced from 63132 us to 100 us 



Checkpoint List Scanning
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Checkpoint List Processing

• Joint work with Yuanhan Liu

• JBD2 tracks all buffers that need checkpointing with 
each transaction

• List cleanup on transaction commit and when running 
out of journal space

• Expensive for loads with lots of small transactions
‒ fs_mark creating 100000 files, 4 KB each, with fsync

• Scanning list repeatedly not cleaning up anything

44.08%  jbd2/ram0­8 [kernel.kallsyms] 0xffffffff81017fe9             
23.76%  jbd2/ram0­8 [jbd2]            journal_clean_one_cp_list      
17.22%  jbd2/ram0­8 [jbd2]            __jbd2_journal_clean_checkpoint
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Checkpoint List Processing Speedup

• No big point in further scanning once we find buffer 
that cannot be cleaned up

• Reduces cleanup time from O(N2) to O(N)

• Merged for 3.18



Conclusion
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Takeaways

• Even if you cannot fundamentally improve scalability, 
just reducing length of critical section can help a lot

• But doing things lockless is still faster

• Balance between “sophisticated but slow” and “simple 
and fast”



Thank you
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