
  

High-speed Data Acquisition
using the

Linux Industrial IO framework

Lars-Peter Clausen, Analog Devices



  

What is High-Speed

● > ~100k samples per second
● Applications

– RF communication, Software Defined Radio, 
Direct RF

– Radar

– Ultrasound

– Measuring equipment, Spectrum analyzer

– Usually NOT: Power monitoring, HID



  

Example I: AD-FMCOMMS2-EBZ

● Software Defined Radio platform
● AD9361 Agile transceiver
● 200 kHz - 56 MHz sample rate
● 2 Channels of RX and TX

– Each channel a set of 12-bit I and Q 
data

– Samples are stored in 16bit words

– 1 - 450 MB/s in each direction



  

Example II: AD-FMCADC2-EBZ

● AD9625 High-Speed 
ADC

● JESD204B interface
● 2.5 GHz sample rate
● 12-bit stored in 16-bit 

word
● 5 GB/s



  

Example III: DAQ2

● High speed data 
acquisition board

● AD9680, dual channel 14-
bit, 1GSPS ADC

● AD9144, quad-channel 
16-bit, 2.8 GSPS DAC

● 4 GB/s receive
● 22.4 GB/s transmit



  

Why use Linux

● Modern systems are diverse and complex (horizontally and 
vertically)
– Many different components from different vendors

– Same components are used in different solutions

● Wide range of supported hardware
– Excellent support for additional peripherals

● Applications processor
● Storage (SATA, SD, ...)
● Connectivity (Ethernet, WiFi, USB, …)
● Human Interface (Graphics, Keyboard, Mouse, …)
● ...



  

Why use Linux

● No need to reinvent the wheel
– Leverage existing solutions

– Focus on solving the problem

– Reduces development cost and time to market



  

What is IIO

● Industrial Input/Output framework
– Not really just for Industrial IO
– All non-HID IO

– ADC, DAC, light, accelerometer, gyro, magnetometer, 
humidity, temperature, rotation, angular momentum, ... 

● In the kernel since v2.6.32 (2009)
● Moved out of staging/ in v3.5 (2012)
● ~200 IIO device drivers (v3.17)

– Many drivers support multiple devices



  

Why use IIO

● Distinction between high-speed and low-speed 
is fuzzy

● Large parts of the existing infrastructure can 
be reused
– E.g. configuration and description API

– High-speed only needs a new transport 
mechanism for data

● Allows sharing of (existing) userspace tools



  

Traditional IIO data flow - Kernel

static irqreturn_t ad7266_trigger_handler(int irq, void *p)
{

…
  spi_read(st->spi, st->data.sample, 4);
  iio_push_to_buffers_with_timestamp(indio_dev, &st->data,
              pf->timestamp);
iio_trigger_notify_done(indio_dev->trig);
…

}

…
ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
        &ad7266_trigger_handler, &iio_triggered_buffer_setup_ops);
…

● Driver registers trigger handler
● Trigger handler is called for each sample
● Trigger handler reads data and passes it to 

the IIO core



  

Kernel – Issue I

● One interrupt per sample
– Large overhead

– Limits the samplerate to a few kSPS



  

Kernel – Issue II

● Multiple memory copies per sample
– iio_push_to_buffers()

● Sample demuxing

– Peripheral access (SPI/I2C/USB/...)

● Impacts performance for larger data sets



  

Traditional IIO data flow - Userspace

...
fd = open("/dev/iio:device4", O_RDONLY);
...
while (...) {
    read(fd, buf, sizeof(buf));
    process_data(buf);
}
...

● Sample data is transferred between userspace 
and kernelspace by write()/read()



  

Userspace – Issue I

● read()/write() does a memory copy
● Impacts performance for larger data sets



  

Issues - Summery

● One interrupt per sample
– Limits the maximum sample rate to a few 100 

kSPS

● Using read()/write() requires a memory copy



  

Design goals for the new API

● Reduce number of interrupts
● Reduce number of memory copy operations



  

Solution I - Blocks

● Group multiple samples into a “block”
● Only generate one interrupt per block

– Reduces management overhead

● Size of one block should be configurable
– Allows application to make tradeoffs between 

latency and management overhead



  

Solution II – DMA + mmap()

● Use DMA to transfer data from peripheral to 
memory

● Use mmap() to make the memory accessible 
from userspace

=> No memory copy necessary

=> De-muxing in userspace for free



  

New DMA based capture flow

1.Application allocates blocks

2.Enqueues them in the incoming 
queue

3.DMA controller processes it

4.Puts it in the outgoing queue

5.Application dequeues it

6.Application processes it

7. goto 2



  

DMA capture flow – FileIO Mode

● Kernel controls block 
flow

● Implements 
read()/write() 
interface

● Compatibility with 
existing applications 



  

Userspace ABI

● 5 ioctls
– IIO_BLOCK_ALLOC_IOCTL

– IIO_BLOCK_FREE_IOCTL

– IIO_BLOCK_QUERY_IOCTL

– IIO_BLOCK_ENQUEUE_IOCTL
– IIO_BLOCK_DEQUEUE_IOCTL

● 2 structs
– struct iio_buffer_block_alloc_req

– struct iio_buffer_block

● mmap()



  

IIO_BLOCK_ALLOC_IOCTL

● Creates and 
allocates new blocks

● Can be called 
multiple times to 
allocate blocks of 
different sizes

● After allocation the 
blocks are owned by 
the application

struct iio_buffer_block_alloc_req {
    __u32 type;
    __u32 size;
    __u32 count;
    __u32 id;
};

int ioctl(int fd,
IIO_BLOCK_ALLOC_IOCTL,
struct iio_buffer_block_req *);



  

IIO_BLOCK_FREE_IOCTL

● Frees all previously allocated blocks
– Necessary to keep block ids contiguous 

int ioctl(int fd, IIO_BLOCK_FREE_IOCTL);



  

IIO_BLOCK_QUERY_IOCTL

● Gets the current state of a block 
from the kernel
struct iio_buffer_block {
    __u32 id;
    __u32 size;
    __u32 bytes_used;
    __u32 type;
    __u32 flags;
    union {
        __u64 offset;
    } data;
    __u64 timestamp;
};

#define IIO_BUFFER_BLOCK_FLAG_TIMESTAMP_VALID (1 << 0)
#define IIO_BUFFER_BLOCK_FLAG_CYCLIC (1 << 1)

int ioctl(int fd, IIO_BLOCK_QUERY_IOCTL,
struct iio_buffer_block *);



  

IIO_BLOCK_ENQUEUE_IOCTL

● Transfers ownership of a block from the 
application to the kernel

● Kernel passes block to the driver for DMA 
transfer setup when IIO buffer is enabled



  

IIO_BLOCK_DEQUEUE_IOCTL

● Transfers ownership of the first completed 
block from the kernel to the application

● Also gets the current state of the block (like 
IIO_BLOCK_QUERY_IOCTL)

● Blocks if no completed block is available
– -EAGAIN if fd is non-blocking



  

New IIO data flow – Userspace I
struct block {

struct iio_buffer_block block;
short *addr;

} blocks[4];

struct iio_buffer_block_alloc_req alloc_req;

fd = open("/dev/iio:device4", O_RDONLY);

memset(&alloc_req, 0, sizeof(alloc_req));
alloc_req.size = 0x100000;
alloc_req.count = ARRAY_SIZE(blocks);
ioctl(fd, IIO_BLOCK_ALLOC_IOCTL, &alloc_req);

for (i = 0; i < alloc_req.count; i++) {
blocks[i].block.id = alloc_req.id + i;
ioctl(fd, IIO_BLOCK_QUERY_IOCTL, &blocks[i].block);
blocks[i].addr = mmap(0, blocks[i].block.size, PROT_READ,

MAP_SHARED, fd, blocks[i].block.data.offset);
ioctl(fd, IIO_BLOCK_ENQUEUE_IOCTL, &blocks[i].block);

}



  

New IIO data flow – Userspace II

...
while (...) {

ioctl(fd, IIO_BLOCK_DEQUEUE_IOCTL, &block);
process_data(blocks[block.id].addr);
ioctl(fd, IIO_BLOCK_ENQUEUE_IOCTL, &block);

}
...



  

Kernel space API

● New callbacks in the iio_buffer_access_funcs 
struct matching the new IOCTLs

struct iio_buffer_access_funcs {
    …
    int (*alloc_blocks)(struct iio_buffer *buffer,
        struct iio_buffer_block_alloc_req *req);
    int (*free_blocks)(struct iio_buffer *buffer);
    int (*enqueue_block)(struct iio_buffer *buffer,
        struct iio_buffer_block *block);
    int (*dequeue_block)(struct iio_buffer *buffer,
        struct iio_buffer_block *block);
    int (*query_block)(struct iio_buffer *buffer,
        struct iio_buffer_block *block);
    int (*mmap)(struct iio_buffer *buffer,
        struct vm_area_struct *vma);
    ...
};



  

struct iio_dma_buffer_ops flow

static int hw_submit_block(void *data,
struct iio_dma_buffer_block *block)

{
/* Setup hardware for the transfer */

}

static irqreturn_t hw_irq(int irq, void *data)
{

/* Get handle to completed block */
...
iio_dma_buffer_block_done(block);
...

}



  

struct iio_dma_buffer_ops flow

static const struct iio_dma_buffer_ops hw_dmabuffer_ops = {
.submit_block = hw_submit_block,

};

static int hw_probe(...)
{

…
buffer = iio_dmabuf_allocate(dev, &hw_dmabuffer_ops,

priv_data);
...

}



  

DMAengine based implementation

● Generic DMAengine API based 
implementation of the submit_buffer() callback
– Detects capabilities of the DMA controller using 

dma_get_slave_caps()

– If your DMA controller has a DMAengine driver it 
works out of the box



  

Upstream status

● Code mostly ready, but not upstream yet
● Multiple stages

– Internal infrastructure for generic DMA support
● Aiming for 3.19

– Output buffer support
● Aiming for 3.19-3.20

– Userspace ABI extensions
● mmap support, allocate and manage blocks
● Aiming for 3.21-3.22



  

Future work

● Componentization
– Split Converter, PHY and DMA driver

– Flow graph (media controller API?)

● Zero copy
– Generic zero copy, e.g. to disk or network

– vmsplice(..., SPLICE_F_GIFT) (?)

● DMABUF support
– Offloading of buffers to other devices, e.g. accelerators 

(DSP, GPGPU, FPGA, ...)



  

Q/A



  

Further information

● https://github.com/orgs/analogdevicesinc

– https://github.com/analogdevicesinc/libiio

– https://github.com/analogdevicesinc/iio-oscilloscope

– https://github.com/analogdevicesinc/linux

● http://wiki.analog.com/resources/tools-software/linux-software/libiio_internals

● http://analogdevicesinc.github.io/libiio/

● http://wiki.analog.com/resources/tools-software/linux-software/iio_oscilloscope


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

