
IPv6 & Linux

10 m

-77



About Me

- Work at Jumping Bean
 - Developer & Trainer
 - Contact Info:

1.6

- Twitter @mxc4
- Twitter @jumpingbeansa
- mark@jumpingbean.co.za

Goals & Motivation

Why?

- Why IPv6?
- Why this talk?
 - Information on the internet fragmented and confusing,
 - No single how-to to get hands dirty

What?

- Understanding of IPv6 concepts, protocol vis-a-vis IPv4,
- How to set up a Linux LAN to use IPv6,
 - Part 1 Setting up your LAN for IPv6

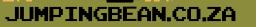
JUMPINGBEAN.CO.ZA

Part 2 – Connecting to the Internet with IPv6

17 III

-

Ìľ



Why IPv6?

- Replacement for IPv4,
- 128 bit IP address

-70

- IPv4 allowed for 4.3 billion possible addresses,
- IPv6 allows for 340 undecillion addresses 3.40E38,
- 7.9E28 more than IPv4 addresses,
- ~ 4.8x10²⁸ addresses for every human on earth (7 billion people).
- 1E32 number of stars in the universe (estimated)
- 1E82 number of atoms in the universe (estimated)

IPv6 Benefits

- No need for NAT,
 - Unique, publicly routable, address per device,
- Devices can have more than one address,
- Eliminates network address collision when merging networks,
- "Simplified" autoconfiguration,

- Better handling for mobile devices,
- Better multicast support,
- IPSec was mandatory, now optional,
- Simplified router processing
 - No support for router fragmentation,

- Packet header processing more efficient
- No broadcast traffic

IPv6 History

- RFC 791 (IPv4) published 1981
- RFC 2460 (IPv6) published 1998
- A long time ago ...
- Not backwardly compatible with IPv4

IPv6 Addresses

[]

G

-

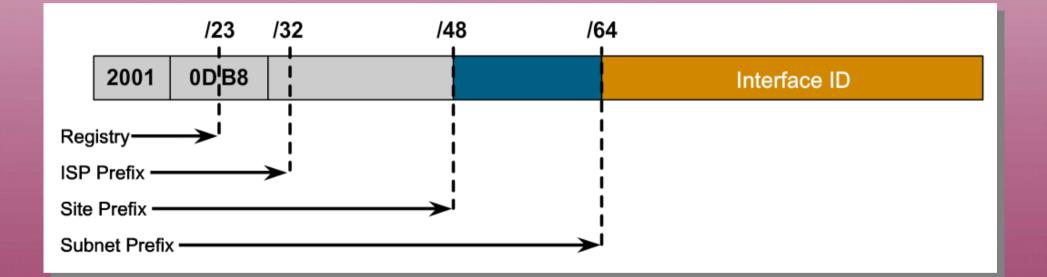
IPv6 Address Notation

- 128 bit address written in hexadecimal,
 - Written as 8 groups of 16 bits separated by a colon:
 - 2001:0db8:85a3:0000:0000:8a2e:0370:7334
- Abbreviation rules:

-753

- Drop leading zeros in 16 bit group,
- If 16 bits all zero replace with empty string "::"
- If there are sequential groups of 0 replaced by empty string then collapse into a single double colon ::

JUMPINGBEAN.CO.ZA


• 2001:db8:85a3::8a2e:370:7334

IPv6 Routing Prefix & Interface ID

- "Network mask" is fixed at 64 most significant bits
 - no CIDR,
- Interface identifier (host portion) is fixed at 64 least significant bits
- Common to see IPv6 address with prefix mask that don't match 64 bits,

- Used in routing,
- Used in address block assignment,
- Used in slicing up blocks for special usage

IPv6 Address Prefix/Subnet

JUMPINGBEAN.CO.ZA

ST 6.

-00

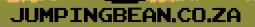
IPv6 Address Allocation

- Internet Assigned Numbers Authority (IANA) assigned Regional Internet Registrars 23/12 bit blocks,
- Regional Internet registrars (Afrinic) assign blocks 19/32 to local Internet registrars,
- End User recommended to get a /48 block which means 65335 subnets but now recommended 56 subnet only 256 subnets.

NGBEAN.CO.ZA

70

IPv6 Address Allocation


- Entities can apply for own, provider independent, IPv6 address block with Regional registrar
- Great for ISP independence,
- Why such large allocations?
 - IPv4 routing tables size (current) 545K,
 - IPv6 routing table size (current) 22K,
 - Generous allocation policy to avoid routing table explosion

LAN Configuration

F

M

-53

IPv6 How it Works

- Every interface has a linklocal address,
 - Network segment only,
- Additional address obtain via
 - Manual configuration, or
 - Automatic configuration,
 - SLAAC
 - DHCP

-70

- Other addresses
 - Unique local
 address (ULA) site
 routable,
 - Global address internet routable,

IPv6 Link Local

- Each interface auto-assigned a link-local ip address fe80::/10,
 - Actual assigned link local is fe80::/64
 - replaces layer 2 arp protocols with layer 3,
 - Neighbourhood discovery \rightarrow map IP to Mac via Neighbour solicitation ,
 - Unique only on local network segment,
 - Used to boot strap other IPv6 protocols and addresses
 - Interface prefix is generated from mac address on ethernet NICs using EUI64:

- Mac address is 48 bits long,
- Interface identifier is 64 bits long
- Not forwarded by routers

Unique Local Address/Global Addresses

JUMPINGBEAN.CO.ZA

- Stateless Automatic Address Configuration allows IPv6 networks to auto-configure themselves via ICMPv6 packets
- Link-Local address allows for
 - the issuing of router solicitation packets,
 - Receipt of router advertisement packets,

Routers

- Receive solicitation packets,
- Send advertisement packets
- Provide node with one or more network prefix and router address
- Network prefix can be a ULA or global address
- Client does duplicate address detection (DAD)

IPv6 - Configurations

• SLAAC can be used in a number of ways:

- Stateless without DHCPv6,
- Stateless with DHCPv6
- Stateful with DHCPv6

Stateless -

- Router/DHCP server does not track ip address,
- Simply provides network prefix,
- Node not guaranteed to get same IPv6 address,
- Node configures host identifier,
- Stateful -
 - DHCP server keeps track of addresses handed out (leases),
 - DHCP can assign same IPv6 address to returning node (DUID),

IPv6 - SLAAC

• Pros

- Automatic configurations,
- No configuration required by client,
- Cons

100

- No updating of DNS for nodes, fixed with RFC6106,

JUMPINGBEAN.CO.ZA

 Limited set of configurations options for auto configuration of nodes

IPv6 – ULA/Global Configurations

JUMPINGBEAN.CO.ZA

• Without DHCP - Router can also send

- DNS server information,
- Router IPv6 address (default gateway),
- Flags
- With DHCP Node can obtain
 - Fixed IP address,
 - Additional configuration information
 - DUID device unique id,
 - DHCPv6 does not use mac address for unique identification,
 - Each address assigned based on DUID and interface Association identifier,
 - Designed to prevent updating DHCP server when network card changes
 - DUID is created by OS or DHCPClient,
 - IAID from mac

Unique Local Address

- ULA similar to private addresses in IPv4,
- Can route traffic across network segments,
- Used for company or home lan,
- Should not be routed by gateway devices,
- Network prefix fc00::/7. As 8th bit is always 1 will see fd00 for ula address

JUMPINGBEAN.CO.ZA

 You can create your own ULA or use sites such as http://unique-local-ipv6.com/

Global Addresses

- Assigned by ISP or Afrinic etc,
- Globally routable,

1.1

- Similar to IPv4 public addresses,
- For ISP router will need to receive IPv6 prefix for use in configuring IP addresses for nodes,
- Global addresses currently start with 2001::

How to do this on Linux?

F

ST (17)

IPv6 on Linux

- How to set up a basic IPv6 network for lan,
- What we will need:
 - radvd router advertisement daemon,
 - "apt-get install radvd"
 - or a router on your network with a router advertisement daemon running and configured with your DHCP server details,

- isc-dhcp-server dhcpv6 capable server,
 - "apt-get install isc-dhcp-server"
- bind9 DNS server for Dynamic DNS updates
 - "apt-get install bind9"

IPv6 RADVD Configuration

};

- Enable Ipv6 forwarding
 - net.ipv6.conf.default.forwarding=1
- Edit /etc/radvd.conf
 - Prefix the network prefix to advertise, can have more than one.
 - Options
 - AdvOnLink on or off link
 - AdvAutonomous whether this prefix can be used for auto config
 - Enable DHCPv6 lookup
 - AdvManagementFlag use stateful IP -assignement
 - AdvOtherConfigFlag get additional 1 config from DHCP server

interface eth0 AdvSendAdvert on; prefix fd45:2222:0:1::/64 AdvOnLink on; AdvAutonomous on: }; interface eth0 AdvSendAdvert on; prefix fd45:2222:0:1::/64 AdvOnLink on; AdvAutonomous on: AdvManagementFlag on; AdvOtherConfigFlag on;

IPv6 – DHCPv6 Set up

- Isc-dhcp-server can run both IPv4 and IPv6 DHCP services,
- IPv6 DHCP uses different ports to IPv4,
- Most options same as for IPv4 with 6 appended,
 - subnet6, range6
- Use DUID instead of MAC for static address assignment,
- Need to setup keys for dynamic DNS update

- Ubuntu 14.04 has a bug cannot start dhcp server with "-6" option to enable ipv6.
- Usually edit /etc/default/iscdhcp-server and add "-6" to options
- Need to add to rc.local for now

JUMPINGBEAN.CO.ZA

 "sudo dhcpd -6 -cf /etc/dhcp/dhcpd.conf -lf /var/lib/dhcp/dhcpd.leases wlan0" ddns-update-style interim; ddns-updates on;

update-conflict-detection false; update-optimization false;

option domain-name "jozilug.co.za"; option dhcp6.name-servers fd5d:12c9:2201:1::2;

default-lease-time 600; max-lease-time 7200; include "/etc/dhcp/rndc.key";

zone jozilug.co.za. { primary 127.0.0.1; key rndc-key;

zone 1.0.0.0.1.0.2.2.c.9.2.1.d.5.d.f { primary 127.0.0.1; key rndc-key;

cubnet6 fd5d:12c9:2201:1::/64 { range6 fd5d:12c9:2201:1::100 fd5d:12c9:2201:1::200;

DHCPv6

- Can operate in several modes
 - Stateless mode → router advertisements assign ip address, DHCP provides DNS, time servers etc
 - Stateful mode \rightarrow DHCP assigns ip addresses and network services,

JUMPINGBEAN.CO.ZA

- DHCPv6-PD prefix delegation obtains network prefix from upstream provider
- Router solicitation \rightarrow

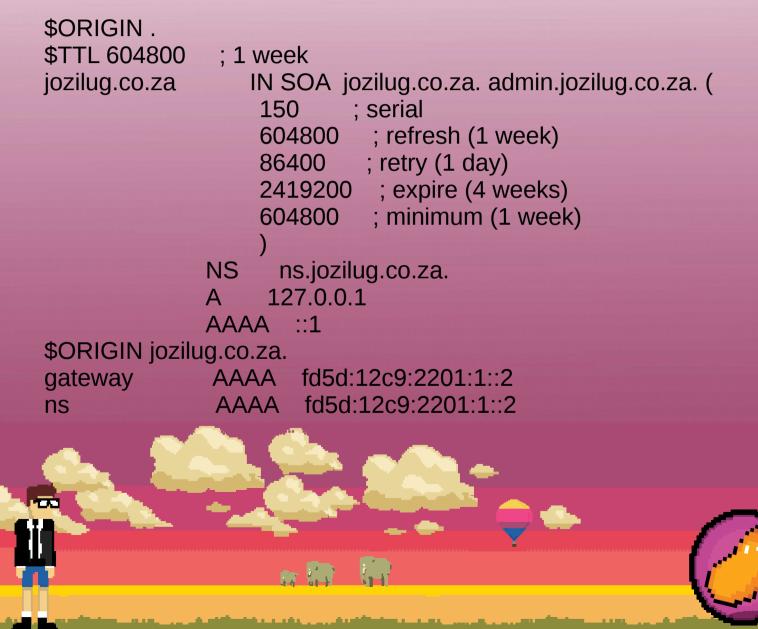
-70

- O flag \rightarrow get configuration information,
- M flag → get IP address

DHCPv6

- Client uses DUID to identify itself (mac address in DHCPv4)
 - DUID unique per server/client,
 - Should not be changed in products lifetime,
 - Must be globally unique
- IAID Interface association ID unique per interface and IP address

DUID


- 4 ways to generate DUID
 - Link layer address + time,
 - Vendor assigned unique id based on enterprise number,
 - Link layer address,
 - UUID used for SIP devices
- Different devices will have different capabilities → e.g. no persistent storage therefore different ways to generate a unique id

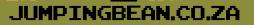
- Problem to detect DUIDs \rightarrow put on label?
- hexdump -e '''%07.7_ax " 1/2 "%04x" " " 14/1 "%02x:" "\n"' /var/lib/dhcpv6/dhcp6c_duid

IPv6 - Bind Set up

- Bind works as for IPv4,
- Bind hosts IPv4 and IPv6 addresses in same zone file,
- Bind will answer queries with the available address. I.e IPv4 host can query for an IPv6 address
- On Ubuntu place zone files in /var/lib/bind otherwise apparmor will prevent updating of zone files

IPv6 - Bind9 Zone File

IPv6 – Bind Reverse Zone File

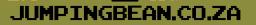

2.0.0.0.0.0.0.0.0.0.0.1.0.0.1.0.2.2.9.c.2.1.d.5.d.f.ip6.arpa. IN PTR ns.jozilug.co.za

Connecting to the Outside World

G (3)

-77

Way too many options


- There are a plethora of "transition mechanisms"
 - IPv4 and IPv6 incompatibility
 - Initially IPv6 over IPv4
 - Then IPv4 over IPv6
- Some are focused on Service provider
 - CG-NAT,NAT444,464XLAT
- Others for LANS,

- Approaches
 - Dual stack
 - Encapsulation,
 - Tunnels,
 - A+P,
 - DS-Lite
 - Translation,
 - NAT64
 - DNS64,

What to use to connect your LAN?

G

-00

NAT64/DNS64

- Your ISP gives you an IPv4 address,
- Use only IPv6 internally and use NAT64(tagya),
- Configure bind9 to return all IPv4 addresses as "fake" ipv6 addresses,

Bind9 Additions to options

NAT64/DNS64

- **Pros** can use Iptables v4 to managed internet connection on Nat64 IPV4 pool,
 - Use only IPv6 internally,
 - Easy to set up
- Cons No access to global IPv6 network. IPv6 only hosts will remain dark

- Not every type of service is accessible
 - Skype,
 - Web Sockets,

Tunnels 6in4

- Set up DHCPv4 along with DHCPv6,
- Static or automatic tunnels
- Static
 - Create IPV6 SIT tunnel (6in4) to router IPv6 traffic
 - Use a tunnel broker like Hurricane Electric or SixX

- Dynamic
 - Teredo
 - ISATAP

DS-Lite

- Used by ISPs
- IPv4 over IPv6 and IPv4 natting
- DS-Lite Dual Stack light
 - CPE provides private Ipv4 addresses to LAN,
 - CPE encapsulates IPV4 addresses in IPv6,
 - Delivers packet to ISP Carrier Grade Nat (CGN) with public Ipv4 address,
 - Recovers Ipv4 packets,
 - Nat its,

-73

• Return traffic is mapped to Ipv4 then encapsulated in IPV6 and back to client

MAP & A+P

- Proposal for ISPs to extend IPv4 address space,
- Address + Port → Single Ipv4 address shared amongst several clients.
 - Client identified by address and port,
 - Each client assigned a port range,
- MAP ->

770

- Mapping and Address Port \rightarrow CISCO Ipv6 transition proposal
- Combined A+P with tunnelling IPV4 packets over ISP Ipv6 network.

Miscellaneous

[]

G

-

Î

Privacy Extensions

- RFC 4941 "Privacy Extensions for Stateless Address Autoconfiguration in IPv6".
- Sysctl use_tempaddr=

171

- <= 0 : disable Privacy Extensions</p>
- == 1 : enable Privacy Extensions, but prefer public addresses over temporary addresses.
- > 1 : enable Privacy Extensions and prefer temporary addresses over public addresses.

- net.ipv6.conf.eth0.use_tempaddr=2
 → /etc/sysctl.conf
- net.ipv6.conf.default.use_tempaddr
 → only sets network addresses
 assigned after boot up
- net.ipv6.conf.all.use_tempaddr → reported bug
- net.ipv6.conf.all.use_tempaddr = 2
- net.ipv6.conf.default.use_tempaddr= 2
- _ net.ipv6.conf.nic0.use_tempaddr =

Disable IPv6

- Remember iptables protects IPv4 addresses only!
- Temporarily disable
 - sudo sh -c 'echo 1 > /proc/sys/net/ipv6/conf/<interface-name>/disable_ipv6'
- Edit /etc/sysctl.conf
 - # IPv6 disabled
 - net.ipv6.conf.all.disable_ipv6 = 1
 - net.ipv6.conf.default.disable_ipv6 = 1
 - net.ipv6.conf.lo.disable_ipv6 = 1
- Edit /etc/default/grub

<mark>Meyer, Mercia <</mark>Mercia.Meyer@ingrammicro.com>

JUMPINGBEAN.CO.ZA

GRUB_CMDLINE_LINUX="ipv6.disable=1"

Mark Clarke @mxc4 www.Jumping Bean.co.za Training, Development & Support