kGraft

Live patching of the Linux kernel

Vojtéch Pavlik
Director SUSE Labs
vojtech@suse.com

SUSE

We adapt. You succeed.

Why live patching?

- Common tiers of change management:
1. Incident response — (we're down, actively exploited ...)
2. Emergency change — (we could go down, are vulnerable ...)

3. Scheduled change — (time is not critical, we keep safe)
- Live patching fits in with 1 and 2

- Rebooting a 1000 servers is not a quick way to fix a
pressing issue and also carries the risk of them not
coming up for other reasons

- Live patching allows quick response and leaving an
actual update to a scheduled downtime window

SUSE

What is kGraft?

- Aresearch project

- A live patching technology

- Developed by SUSE Labs

- Specifically for the Linux kernel

- Based on modern Linux technologies
- INT3/IPI-NMI self-modifying code
- RCU-like update mechanism
- mcount-based NOP space allocation

- standard kernel module loading/linking mechanisms

SUSE.

P g i o ol

Advantages of kGraft

- Doesn't require stopping the kernel, ever

- not even for short time periods unlike other technologies

- Allows code review on kGraft patch sources

- kGraft patch can be built from C source directly, without the
need for object code manipulation

- Object-code based automated patch generation is provided as
an alternative

- kGraft is lean

- Small amount of code thanks to leveraging other Linux
technologies, no complex instruction decoders or such

SUSE

How does kGraft work?

- A kGraft patch is a .ko kernel module in a KMP RPM

- The .ko is inserted into the kernel using 'insmod' at
RPM install or update time

- kGraft replaces whole functions in the kernel
- even while those functions may be executed

- An updated kGraft RPM/module can replace an
existing patch

SUSE

Limitations

- kGraft is designed for fixing critical bugs

- and thus primarily for simple changes

- Changes in kernel data structure layout require
special care

- and depending on the size of the change, the change may not
be possible to do without rebooting at all — same as with other

live patching tech
- kGraft depends on a stable build environment

- and thus best suited for Linux distributions, their customers or
anyone who builds their own kernels, rather than 3" party
support companies

SUSE

kGraft in detail: where to patch

- To patch a function, kGraft needs some space at the
start of a function

- This is, fortunately provided by GCC's profiling code

- ftrace uses the compiler profiling options (- pg) to
obtain this space (__fentry_ _ call)

- __fentry__ call instructions are patched out at boot
and replaced with 5-byte NOPs

- kGraft uses the same space

SUSE

kGraft in detail: where to patch

kernel_func kernel_func

INC mcount [5-byte NOP

kGraft in detail: code flow redirection

- kGraft uses the same infrastructure as ftrace to
perform patching

- INT3 handler is installed with a JMP to the destination
address

- first byte of NOP is replaced by INT3, taking care of
Incomplete instruction

- remaining bytes are replaced by address
- first byte is replaced by JMP

- NMI IPIs are used throughout to flush instruction
decoders on other CPUs

SUSE

kGraft in detail: code flow redirection

kernel_func kerel_func kernel_func kernel_func

T e e e —————————

5-byte NOP INT3 | xxxx INT3 | addr JMP addr

INT3 handler

T T

JMP addr

kGraft function in detail: new function

- Patching during runtime, no st op_ker nel () ;

- Callers are never patched

- Rather, callee's NOP is replaced by a JMP to the new
function

- So a JMP remains forever

- But this takes care of function pointers, including in
structures

- And doesn't require saving any old data in case we
want to un-patch

SUSE

kGraft function in detail: new function

buggy_func
kernel_func JMP fixed
buggy_func();

fixed_func

kGraft in detail: RCU-like replacement

- So what happens when a replaced function changes
semantics and subsequent calls rely on each other?

- Or when it is called recursively?

- We need to provide a consistent 'world-view' to each
execution thread

- USer processes
- interrupts

- kernel processes

- This is done through a "reality check" trampoline and
a per-thread flag set on each kernel entry/exit

SUSE

kGraft in detail: RCU-like replacement

USERSPACE

kernel_func

buggyift.th(:();

buggylmnc(h
V
BOOM!

kGraft in detail: RCU-like replacement

welcome fo

USERSPACE } =] the new universe!

buggy_func

kernel_func
he gw re allty_checE-
work

which universe
are you
coming from?

buggylfuncf)i

fixed_func

1

kGraft in detail: RCU-like replacement

- All processes must wake up or execute a syscall

- Sometimes this requires a signal to be sent (like for
getties)

-+ Once all processes have the "new universe" flag set,
patching is complete and trampolines can be removed

SUSE

kGraft in detail: RCU-like replacement

USERSPACE

kernel_func

heévy
work

buggy func()

kGraft in detail: Automatic generation

- Start with a list of functions to be replaced

- This is automatically extended by any functions that
inline them based on original kernel debuginfo

- Patched kernel is compiled with
-ffuncti on-sections -fdata-secti ons

- Modified objcopy copies all functions and required
symbols into a .o file

- A stub .c file is generated including module init, kgraft
register, and references to functions

- Both are compiled and linked into a .ko module

SUSE

Get it

- Upstreaming
- kGraft will be submitted into Linus's upstream kernel

- SUSE will work together with the community to create a
common standard kernel live patching solution

- Suggestions welcome!
- Publishing
- kGraft code has become available in a GIT repository TODAY

https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git

https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git

Read more about kGraft

- Initial blogs
https://www.suse.com/communities/conversations/kgraft-live-kernel-patching/

https://www.suse.com/communities/conversations/need-kgraft-2/

- Video of kGraft in action
https://www.youtube.com/watch?v=d8Y890btNI8

- Articles/interviews

https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-directo
r-talks-live-kernel-patching-with-kgraft

http://www.serverwatch.com/server-news/linux-kernel-patching-get-dynamic.html
- Collaboration summit talk

http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f233
1c8d

SUSE.

https://www.suse.com/communities/conversations/kgraft-live-kernel-patching/
https://www.suse.com/communities/conversations/need-kgraft-2/
https://www.youtube.com/watch?v=d8Y89obtNI8
https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-director-talks-live-kernel-patching-with-kgraft
https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-director-talks-live-kernel-patching-with-kgraft
http://www.serverwatch.com/server-news/linux-kernel-patching-get-dynamic.html
http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f2331c8d
http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f2331c8d

SUSE

We adapt. You succeed.

SE.

We adapt. You succeed.

Corporate Headquarters +49 911 740 53 0 (Worldwide) Join us on:
Maxfeldstrasse 5 WWWw.suse.com WWW.opensuse.org
90409 Nuremberg

Germany

http://www.opensuse.org/

Unpublished Work of SUSE. All Rights Reserved.

This work'is'an unpublished work and' contains confidential, proprietary and trade secret information of SUSE.

Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of
their assignments. No,part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.

Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer

This document is not to be construed as a promise by any participating company: to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fithess for any particular purpose.
The development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.

