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Why live patching?

- Common tiers of change management:
1. Incident response — (we're down, actively exploited ...)
2. Emergency change — (we could go down, are vulnerable ...)

3. Scheduled change — (time is not critical, we keep safe)
- Live patching fits in with 1 and 2

- Rebooting a 1000 servers is not a quick way to fix a
pressing issue and also carries the risk of them not
coming up for other reasons

- Live patching allows quick response and leaving an
actual update to a scheduled downtime window
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What is kGraft?

- Aresearch project

- A live patching technology

- Developed by SUSE Labs

- Specifically for the Linux kernel

- Based on modern Linux technologies
- INT3/IPI-NMI self-modifying code
- RCU-like update mechanism
- mcount-based NOP space allocation

- standard kernel module loading/linking mechanisms
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Advantages of kGraft

- Doesn't require stopping the kernel, ever

- not even for short time periods unlike other technologies

- Allows code review on kGraft patch sources

- kGraft patch can be built from C source directly, without the
need for object code manipulation

- Object-code based automated patch generation is provided as
an alternative

- kGraft is lean

- Small amount of code thanks to leveraging other Linux
technologies, no complex instruction decoders or such
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How does kGraft work?

- A kGraft patch is a .ko kernel module in a KMP RPM

- The .ko is inserted into the kernel using 'insmod' at
RPM install or update time

- kGraft replaces whole functions in the kernel
- even while those functions may be executed

- An updated kGraft RPM/module can replace an
existing patch
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Limitations

- kGraft is designed for fixing critical bugs

- and thus primarily for simple changes

- Changes in kernel data structure layout require
special care

- and depending on the size of the change, the change may not
be possible to do without rebooting at all — same as with other

live patching tech
- kGraft depends on a stable build environment

- and thus best suited for Linux distributions, their customers or
anyone who builds their own kernels, rather than 3" party
support companies
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kGraft in detail: where to patch

- To patch a function, kGraft needs some space at the
start of a function

- This is, fortunately provided by GCC's profiling code

- ftrace uses the compiler profiling options (- pg) to
obtain this space (__fentry_ _ call)

- __fentry__ call instructions are patched out at boot
and replaced with 5-byte NOPs

- kGraft uses the same space
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kGraft in detail: where to patch

kernel_func kernel_func

INC mcount [ 5-byte NOP




kGraft in detail: code flow redirection

- kGraft uses the same infrastructure as ftrace to
perform patching

- INT3 handler is installed with a JMP to the destination
address

- first byte of NOP is replaced by INT3, taking care of
Incomplete instruction

- remaining bytes are replaced by address
- first byte is replaced by JMP

- NMI IPIs are used throughout to flush instruction
decoders on other CPUs
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kGraft in detail: code flow redirection

kernel_func kerel_func kernel_func kernel_func

T e e e —————————

5-byte NOP INT3 | xxxx INT3 | addr JMP addr

INT3 handler

T T

JMP addr




kGraft function in detail: new function

- Patching during runtime, no st op_ker nel () ;

- Callers are never patched

- Rather, callee's NOP is replaced by a JMP to the new
function

- So a JMP remains forever

- But this takes care of function pointers, including in
structures

- And doesn't require saving any old data in case we
want to un-patch
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kGraft function in detail: new function

buggy_func
kernel_func JMP fixed
buggy_func();

fixed_func




kGraft in detail: RCU-like replacement

- So what happens when a replaced function changes
semantics and subsequent calls rely on each other?

- Or when it is called recursively?

- We need to provide a consistent 'world-view' to each
execution thread

- USer processes
- interrupts

- kernel processes

- This is done through a "reality check" trampoline and
a per-thread flag set on each kernel entry/exit
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kGraft in detail: RCU-like replacement

USERSPACE

kernel_func

buggyift.th(:();

buggylmnc(h
V
BOOM!




kGraft in detail: RCU-like replacement

welcome fo

USERSPACE } =] the new universe!

buggy_func

kernel_func
he gw re allty_checE-
work

which universe
are you
coming from?

buggylfuncf)i

fixed_func
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kGraft in detail: RCU-like replacement

- All processes must wake up or execute a syscall

- Sometimes this requires a signal to be sent (like for
getties)

-+ Once all processes have the "new universe" flag set,
patching is complete and trampolines can be removed
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kGraft in detail: RCU-like replacement

USERSPACE

kernel_func

heévy
work

buggy func()




kGraft in detail: Automatic generation

- Start with a list of functions to be replaced

- This is automatically extended by any functions that
inline them based on original kernel debuginfo

- Patched kernel is compiled with
-ffuncti on-sections -fdata-secti ons

- Modified objcopy copies all functions and required
symbols into a .o file

- A stub .c file is generated including module init, kgraft
register, and references to functions

- Both are compiled and linked into a .ko module
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Get it

- Upstreaming
- kGraft will be submitted into Linus's upstream kernel

- SUSE will work together with the community to create a
common standard kernel live patching solution

- Suggestions welcome!
- Publishing
- kGraft code has become available in a GIT repository TODAY

https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git



https://git.kernel.org/cgit/linux/kernel/git/jirislaby/kgraft.git

Read more about kGraft

- Initial blogs
https://www.suse.com/communities/conversations/kgraft-live-kernel-patching/

https://www.suse.com/communities/conversations/need-kgraft-2/

- Video of kGraft in action
https://www.youtube.com/watch?v=d8Y890btNI8

- Articles/interviews

https://www.linux.com/news/featured-blogs/200-libby-clark/764542-suse-labs-directo
r-talks-live-kernel-patching-with-kgraft

http://www.serverwatch.com/server-news/linux-kernel-patching-get-dynamic.html
- Collaboration summit talk

http://collaborationsummit2014.sched.org/event/0d798ed17bfaa0361d0aec63f233
1c8d
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