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Introduction The Goal

What We Are After

Objective

Use only as much energy as needed to achieve sufficient performance.

What software can do

1 Determine how much throughput/capacity is needed.

2 Determine how much latency is acceptable.

3 Enumerate the hardware PM features.

4 Use them to deliver exactly as much as necessary.

What about the Linux kernel?
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Introduction The Goal

The Kernel’s Role

Provide means of control

State selection (component level).

Carrying out transitions between states (the “mechanics”).

Response to events (e.g. wakeup).

Estimate the needs

Use information available internally (e.g. from the CPU scheduler).

React to the actions of user space.

Follow trends/patterns.
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Introduction Power Management Frameworks

Working-State PM and System-Wide PM (Sleep States)
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Introduction Power Management Frameworks

Power Management Frameworks in The Linux Kernel
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System-Wide Power Management (Sleep States) How It Works

System-Wide PM Overview

Global energy-saving states, “frozen” user space

Suspend-to-Idle, Standby, Suspend-to-RAM, Hibernate.

Controlled by user space

1 User space selects the target state.
2 User space decides when to start transitions.

Direct command (sysfs write).
Autosleep interface.

Used on many systems

Desktop distributions, Android (autosleep interface).
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System-Wide Power Management (Sleep States) How It Works

System-Wide PM Frameworks
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System-Wide Power Management (Sleep States) How It Works

System Suspend/Resume Control Flow
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System-Wide Power Management (Sleep States) How It Works

System Hibernation/Restore Control Flow
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System-Wide Power Management (Sleep States) The Future

The Future of System-Wide PM

Hibernation

Doesn’t go away (supported on ARM64 now, works with KASLR).

Encrypted images problematic.

Will persistent memory make it obsolete?

Future platforms may not support “platform offline”

Suspend-to-RAM and Standby may not make sense.

CPU offline/core offline steps unnecessary.

Suspend-to-Idle can leverage the existing infrastructure.
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System-Wide Power Management (Sleep States) The Future

Suspend-to-Idle vs Working-State PM

For long inactivity periods Suspend-to-Idle always uses less energy

Suspends timekeeping (no timer interrupts).

Longer average time between wakeups.

Different mechanisms for different use cases

Suspend on closing laptop lid (working-state PM insufficient).

Opportunistic idle (Suspend-to-Idle insufficient).

Suspend-to-Idle might be more efficient than it is today

Framework/driver issues to fix.
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Working-State Power Management I/O Device Runtime PM

Suspend/Resume of I/O Devices
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Working-State Power Management I/O Device Runtime PM

Device PM Operations and The Driver Core
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Working-State Power Management I/O Device Runtime PM

Device PM Operations and PM Domains
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Working-State Power Management I/O Device Runtime PM

Device Runtime PM Operations
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Working-State Power Management I/O Device Runtime PM

Runtime PM on Future Systems

Hardware design trends

Increasing integration of components.

Increasing level of support for aggressive PM.

System-on-a-Chip (SoC) configurations

CPU packages contain I/O devices.

Package low-power states depend on I/O devices.

PM features of different components are interdependent.

Challenge: Take dependencies into account
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Working-State Power Management CPU Power Management

CPU Power Management Frameworks
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Working-State Power Management CPU Power Management

CPU Power Management Overview
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Working-State Power Management CPU Power Management

Cooperation Between Components Is Key
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Working-State Power Management CPU Power Management

CPUIdle Workflow
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Working-State Power Management CPU Power Management

CPUFreq: Old-Style Governors and intel pstate
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Working-State Power Management CPU Power Management

CPUFreq: schedutil Governor
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Working-State Power Management CPU Power Management

CPUFreq: Scheduler Hints, Cross-CPU Updates

Observations

It is good to take blocking on I/O (IOwait) into account.

Different scheduling classes require different handling.

Solution: Scheduler hints (work in progress)

Pass hints from the CPU scheduler to governor callbacks.

A hint can represent the reason update or similar.

Observation

In some cases it is beneficial to invoke governor callbacks cross-CPU.
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Working-State Power Management CPU Power Management

The Future of CPU Power Management

Complex topologies (hardware threads, modules, packages)

Many different scheduling strategies are potentially viable.

PM-Aware Scheduling Conjecture

Energy efficiency may be improved without hurting performance by making
the CPU scheduler drive CPU power management as a whole.

Predictions (usual disclaimers apply)

PM-aware scheduling will enter the mainline kernel.

CPUFreq and CPUIdle will be combined.
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Conclusion

The Linux kernel supports power management in a number of ways.

Both system-wide and working state (runtime) PM are supported.

Support for system-wide PM in device drivers is generally better.

I/O device runtime PM support is improving.

CPU PM is well supported, consolidation in progress.

Hardware design trends increase PM complexity.

Interdependencies between PM features are challenging.

Questions?
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Resources

Documentation and Source Code

Documentation/cpu-freq/*

Documentation/cpuidle/*

Documentation/power/devices.txt

Documentation/power/pci.txt

Documentation/power/runtime pm.txt

include/linux/cpufreq.h

include/linux/cpuidle.h

include/linux/device.h

include/linux/pm.h

include/linux/pm runtime.h

include/linux/suspend.h

drivers/acpi/processor idle.c

drivers/base/power/*

drivers/cpufreq/*

drivers/cpuidle/*

kernel/power/*
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Legal Information
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Thanks!

Thank you for attention!
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How System-Wide PM Is Used

Laptop/Handheld Usage Scenarios
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How System-Wide PM Is Used

Dark Resume Scenario
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