
PM Infrastructure in the Linux* Kernel
Current Status And Future

Rafael J. Wysocki

Intel Open Source Technology Center

October 4, 2016

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 1 / 32



Outline

1 Introduction
The Goal
Power Management Frameworks

2 System-Wide Power Management (Sleep States)
How It Works
The Future

3 Working-State Power Management
I/O Device Runtime PM
CPU Power Management

4 Resources

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 2 / 32



Introduction The Goal

What We Are After

Objective

Use only as much energy as needed to achieve sufficient performance.

What software can do

1 Determine how much throughput/capacity is needed.

2 Determine how much latency is acceptable.

3 Enumerate the hardware PM features.

4 Use them to deliver exactly as much as necessary.

What about the Linux kernel?

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 3 / 32



Introduction The Goal

The Kernel’s Role

Provide means of control

State selection (component level).

Carrying out transitions between states (the “mechanics”).

Response to events (e.g. wakeup).

Estimate the needs

Use information available internally (e.g. from the CPU scheduler).

React to the actions of user space.

Follow trends/patterns.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 4 / 32



Introduction Power Management Frameworks

Working-State PM and System-Wide PM (Sleep States)

S
le

e
p
in

g

Hibernate

Suspend (Deep)

Suspend-to-Idle (Shallow)

Runtime Idle

Runtime ActiveW
o
rk

in
g

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 5 / 32



Introduction Power Management Frameworks

Power Management Frameworks in The Linux Kernel

Working

cpufreq
PM QoS cpuidle

Sleeping

Hibernation

devfreq

System
Suspend

Runtime PM

Device
Suspend

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 6 / 32



System-Wide Power Management (Sleep States) How It Works

System-Wide PM Overview

Global energy-saving states, “frozen” user space

Suspend-to-Idle, Standby, Suspend-to-RAM, Hibernate.

Controlled by user space

1 User space selects the target state.
2 User space decides when to start transitions.

Direct command (sysfs write).
Autosleep interface.

Used on many systems

Desktop distributions, Android (autosleep interface).

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 7 / 32



System-Wide Power Management (Sleep States) How It Works

System-Wide PM Frameworks

Working

cpufreq
PM QoS cpuidle

Sleeping

Hibernation

devfreq

System
Suspend

Runtime PM

Device
Suspend

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 8 / 32



System-Wide Power Management (Sleep States) How It Works

System Suspend/Resume Control Flow

ResumeSuspend

Call Notifiers

Freeze Tasks

Device Suspend Device Resume

Thaw Tasks

Call Notifiers

Wait For a Wakeup Interrupt

ResumeSuspend

Call Notifiers

Freeze Tasks

Nonboot CPU Offline

System Core Offline

Device Suspend

Platform Offline

System Core Online

Nonboot CPU Online

Device Resume

Thaw Tasks

Call Notifiers

Platform Online

.prepare()

.suspend()

.suspend_late()

.suspend_noirq()

.prepare()

.suspend()

.suspend_late()

.suspend_noirq().resume_noirq()

.resume_early()

.resume()

.complete()

.resume_noirq()

.resume_early()

.resume()

.complete()

Wait For a Wakeup Event

Full Suspend Suspend to Idle

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 9 / 32



System-Wide Power Management (Sleep States) How It Works

System Hibernation/Restore Control Flow

Call Notifiers

Freeze Tasks

Device Freeze

Create Image

Device Thaw

Freeze Transition

Thaw Transition

Save Image Turn Off Power

Device Power Off

Power Off Transition

.prepare()

.freeze()

.freeze_late()

.freeze_noirq()

Nonboot CPU Offline

System Core Offline

.thaw_noirq()

.thaw_early()

.thaw()

.complete()

Nonboot CPU Online

System Core Online

.prepare()

.poweroff()

.poweroff_late()

.poweroff_noirq()

Nonboot CPU Offline

System Core Offline

Call Notifiers

Freeze Tasks

Device Freeze

Device Restore

Freeze Transition

Nonboot CPU Online

System Core Online

Restore Transition

Thaw Tasks

Call Notifiers

JUMP

Boot Kernel

Image Kernel

Hibernation Restore

.prepare()

.freeze()

.freeze_late()

.freeze_noirq()

Nonboot CPU Offline

System Core Offline

.restore_noirq()

.restore_early()

.restore()

.complete()

Load Image

Restore Memory

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 10 / 32



System-Wide Power Management (Sleep States) The Future

The Future of System-Wide PM

Hibernation

Doesn’t go away (supported on ARM64 now, works with KASLR).

Encrypted images problematic.

Will persistent memory make it obsolete?

Future platforms may not support “platform offline”

Suspend-to-RAM and Standby may not make sense.

CPU offline/core offline steps unnecessary.

Suspend-to-Idle can leverage the existing infrastructure.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 11 / 32



System-Wide Power Management (Sleep States) The Future

Suspend-to-Idle vs Working-State PM

For long inactivity periods Suspend-to-Idle always uses less energy

Suspends timekeeping (no timer interrupts).

Longer average time between wakeups.

Different mechanisms for different use cases

Suspend on closing laptop lid (working-state PM insufficient).

Opportunistic idle (Suspend-to-Idle insufficient).

Suspend-to-Idle might be more efficient than it is today

Framework/driver issues to fix.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 12 / 32



Working-State Power Management I/O Device Runtime PM

Suspend/Resume of I/O Devices

Working

cpufreq
PM QoS cpuidle

Sleeping

Hibernation

devfreq

System
Suspend

Runtime PM

Device
Suspend

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 13 / 32



Working-State Power Management I/O Device Runtime PM

Device PM Operations and The Driver Core

Driver Core

Bus Class

Subsystem Layer

Device Driver

Device

Action

Type

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 14 / 32



Working-State Power Management I/O Device Runtime PM

Device PM Operations and PM Domains

Driver Core

Bus Type

Subsystem Layer

Device Driver

Device

Action

PM Domain

Class

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 15 / 32



Working-State Power Management I/O Device Runtime PM

Device Runtime PM Operations

Suspended

Active

Is Idle?
YES

NO

SuspendResume

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 16 / 32



Working-State Power Management I/O Device Runtime PM

Runtime PM on Future Systems

Hardware design trends

Increasing integration of components.

Increasing level of support for aggressive PM.

System-on-a-Chip (SoC) configurations

CPU packages contain I/O devices.

Package low-power states depend on I/O devices.

PM features of different components are interdependent.

Challenge: Take dependencies into account

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 17 / 32



Working-State Power Management CPU Power Management

CPU Power Management Frameworks

Working

cpufreq
PM QoS cpuidle

Sleeping

Hibernation

devfreq

System
Suspend

Runtime PM

Device
Suspend

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 18 / 32



Working-State Power Management CPU Power Management

CPU Power Management Overview

CPUFreq

Performance
States

CPUIdle

Idle States

CPU Scheduler

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 19 / 32



Working-State Power Management CPU Power Management

Cooperation Between Components Is Key

CPUFreq

Performance
States

CPUIdle

Idle States

CPU Scheduler

Linux PM

CPUFreq

Performance
States

CPUIdle

Idle States

CPU Scheduler

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 20 / 32



Working-State Power Management CPU Power Management

CPUIdle Workflow

CPUIdle

Idle States

CPU SchedulerIdle CPU

Wakeup

Timekeeping

Next timer event

Timekeeping

Next timer event

Timekeeping

Next timer event

PM QoS

Latency tolerance

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 21 / 32



Working-State Power Management CPU Power Management

CPUFreq: Old-Style Governors and intel pstate

CPU Scheduler

Adjust performance

Estimate utilization

Governor callback

Adjust performance
(Driver)

Estimate utilization

Queue up work

Timekeeping

Idle/Total Time Ratio

Governor callback

intel_pstate Generic Governors

CPU Scheduler

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 22 / 32



Working-State Power Management CPU Power Management

CPUFreq: schedutil Governor

Adjust performance
(Driver)

Compute frequency

Governor callback

Fast switching
supported?

YES

Queue up work
NO

Adjust performance
(Driver)

CPU Scheduler

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 23 / 32



Working-State Power Management CPU Power Management

CPUFreq: Scheduler Hints, Cross-CPU Updates

Observations

It is good to take blocking on I/O (IOwait) into account.

Different scheduling classes require different handling.

Solution: Scheduler hints (work in progress)

Pass hints from the CPU scheduler to governor callbacks.

A hint can represent the reason update or similar.

Observation

In some cases it is beneficial to invoke governor callbacks cross-CPU.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 24 / 32



Working-State Power Management CPU Power Management

The Future of CPU Power Management

Complex topologies (hardware threads, modules, packages)

Many different scheduling strategies are potentially viable.

PM-Aware Scheduling Conjecture

Energy efficiency may be improved without hurting performance by making
the CPU scheduler drive CPU power management as a whole.

Predictions (usual disclaimers apply)

PM-aware scheduling will enter the mainline kernel.

CPUFreq and CPUIdle will be combined.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 25 / 32



Conclusion

The Linux kernel supports power management in a number of ways.

Both system-wide and working state (runtime) PM are supported.

Support for system-wide PM in device drivers is generally better.

I/O device runtime PM support is improving.

CPU PM is well supported, consolidation in progress.

Hardware design trends increase PM complexity.

Interdependencies between PM features are challenging.

Questions?

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 26 / 32



Resources

References

R. J. Wysocki, CPUfreq and The Scheduler: Revolution in CPU Power Management

(http://events.linuxfoundation.org/sites/events/files/slides/cpufreq_and_scheduler_0.pdf).

Neil Brown, Improvements in CPU frequency management (http://lwn.net/Articles/682391/).

Len Brown, Suspend/Resume at the Speed of Light (http://events.linuxfoundation.org/sites/events/files/

slides/Brown-Linux-Suspend-at-Speed-of-Light-LC-EU-2015.pdf).

R. J. Wysocki, Getting More Out Of System Suspend In Linux

(http://events.linuxfoundation.org/sites/events/files/slides/linux_suspend.pdf).

R. J. Wysocki, Power Management in the Linux Kernel – Current Status and Future

(http://events.linuxfoundation.org/sites/events/files/slides/kernel_PM_plain.pdf).

Jonathan Corbet, The cpuidle subsystem (http://lwn.net/Articles/384146/).

R. J. Wysocki, Why We Need More Device Power Management Callbacks

(https://events.linuxfoundation.org/images/stories/pdf/lfcs2012_wysocki.pdf).

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 27 / 32

http://events.linuxfoundation.org/sites/events/files/slides/cpufreq_and_scheduler_0.pdf
http://lwn.net/Articles/682391/
http://events.linuxfoundation.org/sites/events/files/slides/Brown-Linux-Suspend-at-Speed-of-Light-LC-EU-2015.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Brown-Linux-Suspend-at-Speed-of-Light-LC-EU-2015.pdf
http://events.linuxfoundation.org/sites/events/files/slides/linux_suspend.pdf
http://events.linuxfoundation.org/sites/events/files/slides/kernel_PM_plain.pdf
http://lwn.net/Articles/384146/
https://events.linuxfoundation.org/images/stories/pdf/lfcs2012_wysocki.pdf


Resources

Documentation and Source Code

Documentation/cpu-freq/*

Documentation/cpuidle/*

Documentation/power/devices.txt

Documentation/power/pci.txt

Documentation/power/runtime pm.txt

include/linux/cpufreq.h

include/linux/cpuidle.h

include/linux/device.h

include/linux/pm.h

include/linux/pm runtime.h

include/linux/suspend.h

drivers/acpi/processor idle.c

drivers/base/power/*

drivers/cpufreq/*

drivers/cpuidle/*

kernel/power/*

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 28 / 32



Legal Information

Intel is a trademark of Intel Corporation in the U. S. and other countries.
*Other names and brands may be claimed as the property of others.
Copyright c© 2016 Intel Corporation, All rights reserved.

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 29 / 32



Thanks!

Thank you for attention!

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 30 / 32



How System-Wide PM Is Used

Laptop/Handheld Usage Scenarios

Time

Power

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

Display

R
u

n
ti

m
e
 A

c
ti

v
e

Display

Runtime Idle

Display

Wake SleepInterrupt

Time

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

D
is

p
la

y

Runtime Idle

Display

Wake Sleep

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

D
is

p
la

y

Runtime Idle

Display

Wake Sleep

Laptop Handheld

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 31 / 32



How System-Wide PM Is Used

Dark Resume Scenario

Time

Power

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

D
is

p
la

y

Runtime Idle

Display

Wake Sleep

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

Wake Sleep

R
e
s
u

m
e

S
u

s
p

e
n

d

R
u

n
ti

m
e
 A

c
ti

v
e

Rafael J. Wysocki (Intel OTC) PM in the Linux Kernel October 4, 2016 32 / 32


	Introduction
	The Goal
	Power Management Frameworks

	System-Wide Power Management (Sleep States)
	How It Works
	The Future

	Working-State Power Management
	I/O Device Runtime PM
	CPU Power Management

	Resources
	How System-Wide PM Is Used

